Η φύση αγαπά την αλήθεια, και η αλήθεια της φύσης διεκδικεί το δικαίωμα να εκτίθεται μόνο σε όσους την ποθούν. Φ. Ντοστογιέφσκι

Σάββατο 22 Δεκεμβρίου 2018

Αρμονικό κύμα: παρακολουθώντας την κίνηση μιας κορυφής

Kατά μήκος ενός γραμμικού ελαστικού μέσου, που η διεύθυνσή του ταυτίζεται με τον άξονα x΄x, έχει αναπτυχθεί ένα αρμονικό κύμα πλάτους Α. Θεωρούμε τη θέση ισορροπίας ενός σημείου Ο του ελαστικού μέσου ως αρχή των αξόνων x΄x και ψ΄ψ κι αρχίζουμε να μετράμε το χρόνο από κάποια στιγμή που το σημείο αυτό βρίσκεται στην πάνω ακραία θέση του. Έτσι, τη στιγμή t = 0, στην αρχή αξόνων βρίσκεται η κορυφή που δείχνεται με το κατακόρυφο βέλος.
α) Αν η ταχύτητα με την οποία μετακινείται η κορυφή αυτή είναι υ = 1 m/sec και αν η μέγιστη επιτάχυνση του σημείου Ο είναι 0,8π2 m/sec2, να βρείτε την εξίσωση του κύματος.
β) Σε ποια θέση βρίσκεται η παραπάνω κορυφή τη στιγμή που το σημείο Ο διέρχεται για έκτη φορά από τη θέση ισορροπίας του;
 (Τα παραπάνω στιγμιότυπα, για λόγους απλότητος, έχουν σχεδιαστεί σε ένα ορισμένο τμήμα του ελαστικού μέσου). 

Σάββατο 8 Δεκεμβρίου 2018

Απώλεια ενέργειας ταλάντωσης σε μια ιδιαίτερη πλαστική κρούση. Ποσοτική και ποιοτική μελέτη

Δίνεται ο απλός αρμονικός ταλαντωτής του σχήματος: ένα σώμα Σ μάζας m, που βρίσκεται πάνω σε λείο οριζόντιο επίπεδο, και ένα ιδανικό οριζόντιο ελατήριο σταθεράς k = 100 Ν/m, που η μια του άκρη είναι δεμένη στο σώμα και η άλλη του άκρη είναι στερεωμένη ακλόνητα.
Το σώμα Σ κινείται μεταξύ των θέσεων Α και Β με πλάτος Α.
Από ύψος h αφήνουμε να πέσει ένα κομμάτι πλαστελίνης μάζας m, το οποίο προσκολλάται στο σώμα που ταλαντώνεται.
I. Σε ποια από τις παρακάτω θέσεις πρέπει να γίνει η κρούση ώστε η απώλεια της μηχανικής ενέργειας του συστήματος να είναι η μέγιστη δυνατή;
α. Σε μια ακραία θέση,    
β. Στη θέση ισορροπίας Ο,      
γ. Σε καμιά· η απώλεια μηχανικής ενέργειας είναι ίδια σε οποιαδήποτε θέση γίνει η κρούση.
ΙΙ. Να αιτιολογήσετε την απάντησή σας.

Η χρονική διάρκεια της κρούσης να θεωρηθεί αμελητέα. 

ΘΕΜΑ Β στις Α.Α.Τ. Απλό και «αναμενόμενο»

Ένα σώμα Σ μάζας m ισορροπεί δεμένο ανάμεσα σε δύο κατακόρυφα ελατήρια με σταθερές k1 και k2, όπως στο σχήμα. Αν κόψουμε το πάνω ελατήριο, το σώμα αρχίζει να κινείται με επιτάχυνση μέτρου α2,αρχ = 6 m/s2 και εκτελεί μια α.α.τ. πλάτους Α2.
Ι. Αν κόψουμε το κάτω ελατήριο αρχίζει να κινείται με αρχική επιτάχυνση α1,αρχ που έχει μέτρο:
                                                   α. 2 m/s2,    β. 4 m/s2,    γ. 6 m/s2
ΙΙ. Αν είναι k2 = 2k1 και το πλάτος της πρώτης ταλάντωσης (που θα κάνει στερεωμένο στο κάτω ελατήριο) είναι Α2 = 6 cm, τότε το πλάτος Α1 της δεύτερης ταλάντωσης (που θα κάνει στερεωμένο στο πάνω ελατήριο) είναι:        
                                                     α. 4 cm,    β. 6 cm,    γ. 8 cm.

Δίνεται η επιτάχυνση βαρύτητας g = 10 m/s2

Παρασκευή 19 Οκτωβρίου 2018

Κρούσεις - Επτά απορίες μαθητών

1.  {Κ} = {Ρ} --->  υ = ;

Μου δόθηκε η ερώτηση
«Πόση πρέπει να είναι η ταχύτητα ενός σώματος ώστε η κινητική του ενέργεια και η ορμή του να έχουν ίδια αριθμητική τιμή;»

Και απάντησα ως εξής: 
12m υ·υ =  mυ    υ = 2 m/s

Όμως ο καθηγητής, στις οδηγίες που μας έδωσε, μας είπε να προσέξουμε, γιατί η σωστή λύση δεν περιλαμβάνει μόνο μια τιμή της ταχύτητας. Δεν μπορώ να βρω πού κάνω λάθος. Θα ήθελα να με διαφωτίσετε.

Απάντηση:


2. Με προβλημάτισε η λύση της παρακάτω άσκησης:


 «Ένας σκιέρ μάζας Μ, βρίσκεται ακίνητος πάνω σε μια παγωμένη οριζόντια επιφάνεια κρατώντας μια μπάλα μάζας m. Κάποια στιγμή πετά οριζόντια τη μπάλα με ταχύτητα υ προς ένα κατακόρυφο τοίχο. Η μπάλα συγκρούεται ελαστικά με τον τοίχο, αναπηδά και επιστρέφει στην αγκαλιά του σκιέρ. Ποια είναι η τελική ταχύτητα του σκιέρ, αν αγνοήσουμε το πεδίο βαρύτητας και τις αντιστάσεις του αέρα;»

Η απάντηση στο βιβλίο είναι η εξής:
Εφαρμόζοντας δύο φορές την Α.Δ.Ο θα βρούμε την ταχύτητα του σκιέρ αμέσως μετά το πιάσιμο της μπάλας. Όταν πετάει την μπάλα προς τον τοίχο,
                                                               Μυ1 = mυ                      (1)
Και όταν πιάνει την μπάλα κατά την επιστροφή  της,
                                             ( Μ + m)V1 = Mυ1 + mυ = 2mυ     (2)
                                                        V1 = 2mυm+M                    (3)

Έχω την εξής απορία που αφορά στη σχέση (2). Γνωρίζω ότι η σύγκρουση της μπάλας με τον άνθρωπο είναι ανελαστική και για αυτό τα δύο σώματα θα αποκτήσουν την ίδια ταχύτητα. Δεν καταλαβαίνω όμως γιατί οι συγγραφείς  έχουν εξισώσει το ( Μ + m)V1 με το 2mυ. Πώς προέκυψε το 2mυ!

Απάντηση:


3. Ποιος από τους δυο μας κάνει λάθος;
Για εργασία στο σπίτι ο καθηγητής μας, μας έδωσε την εξής άσκηση:


Έστω ότι ένα υποθετικό τρένο μάζας m = 2 kg, φορτωμένο με ένα βαρύ σώμα μάζας Μ = 48 kg, κινείται ελεύθερα χωρίς τριβές με ταχύτητα υ = 1m/s πάνω σε μια ευθύγραμμη σιδηρογραμμή. Ξαφνικά το σώμα εκτοξεύεται κάθετα προς την πορεία του τρένου με ταχύτητα 0,5 m/s. Η σιδηρογραμμή είναι αρκετά σταθερή και το άδειο τρένο συνεχίζει το ταξίδι του.
Ποια είναι η τελική ταχύτητα του τρένου μετά την εκτόξευση του σώματος;

Η λύση μου έχει ως εξής. Επειδή δεν ασκείται κάποια δύναμη κατά τη διεύθυνση της κίνησης του τρένου, η ορμή του συστήματος (τρένο – φορτίο) κατά τη διεύθυνση αυτή διατηρείται,
                                                            (Μ+m)υ = mυ΄         (1)
                                                               υ΄ = (Μ+mm
                                                                    υ΄ =  (48kg + 2kg)(1m/s)2kg = 25 m/s
Επειδή η λύση μου φάνηκε αρκετά απλή είπα να βρω και κάτι άλλο. Σκέφτηκα να δω τι συμβαίνει με τη συνολική κινητική ενέργεια του συστήματος. Γνωρίζω ότι εδώ η συνολική κινητική ενέργεια δεν διατηρείται (έχουμε κάτι σαν σχάση όπου η ενέργεια αυτή αυξάνεται). Πράγματι,  η ενέργεια αυτή πριν την αποβολή του σώματος ήταν 25 J, ((1/2)50·12) ενώ μετά παίρνει την τιμή 631 J ( (1/2)2·252+ (1/2)48·0,52).

Όμως ένας συμμαθητής μου, πολύ καλός στη φυσική, σε επικοινωνία που είχα μαζί του, μου είπε ότι αυτός έχει βρει άλλη τιμή για την ταχύτητα του τρένου, που δε θέλησε να μου την πει. Αντί γι' αυτό μου είπε ότι,τελικά, το σύστημα έχει κινητική ενέργεια 600 J μικρότερη από αυτήν που έχω βρει.
Ποιος από τους δυο μας κάνει λάθος;


Απάντηση:


4. Παραβιάζεται η αρχή διατήρησης της ορμής στο παρακάτω παράδειγμα;



 Θεωρείστε μέσα σε ένα ακίνητο βαγόνι τρένου δύο ελαστικές μπάλες Α και Β, που κινούνται οριζόντια με αντίθετες ορμές Ρ και -Ρ, αντίστοιχα. Κάποια στιγμή, η μπάλα Β που έχει ορμή -Ρ συγκρούεται  ελαστικά με το κατακόρυφο  τοίχωμα του βαγονιού και επιστρέφει με ορμή Ρ.  Πριν την κρούση η συνολική ορμή ήταν Ρ + (-Ρ) = 0, μετά είναι Ρ + Ρ = 2Ρ.

Δεν παραβιάζει αυτό την Αρχή διατήρησης της ορμής;


Απάντηση:


5. Γιατί δεν ισχύει ΔΚ = (ΔΡ)2/2m;

Όπως είναι γνωστό, η κινητική ενέργεια και η ορμή ενός σώματος συνδέονται με τη σχέση Κ = Ρ2/2m. Όμως στο παράδειγμα του διπλανού σχήματος, η μεταβολή ορμής είναι διαφορετική του μηδενός (2P), ενώ η μεταβολή της κινητικής ενέργειας είναι ίση με μηδέν.  Φαίνεται, δηλαδή, ότι δε συνδέονται με παρόμοια σχέση και οι μεταβολές αυτών των μεγεθών. Γιατί, όμως, δεν ισχύει ΔΚ = (ΔΡ)2/2m
Απάντηση:


6. Ένας πολύ μεγάλος αριθμός κρούσεων ανά sec και η πίεση που προκαλούν
Η παρακάτω ερώτηση πολλαπλής επιλογής έχει πέσει σε δημόσιες εξετάσεις εισαγωγής στην ανώτατη εκπαίδευση κάποιας μεγάλης χώρας.
Η μάζα ενός μορίου υδρογόνου είναι 3,32·10-27 kg. Αν 1023 μόρια υδρογόνου προσπίπτουν ανά sec σε μια λεία επίπεδη επιφάνεια 2 cm2 υπό γωνία 450 με ταχύτητα 103 m/s και αναπηδούν ελαστικά, τότε η πίεση στην επιφάνεια είναι:
   α. 2,35·102 Ν/m2 β.  2,35·103 Ν/m2,   γ. 4,70·103 Ν/m2  

Σκέφτηκα να βρω τη συνολική μεταβολή ορμής των μορίων και να διαιρέσω με το χρόνο 1s, δηλαδή, (dP1+dP2+dP3+ … +dPN)/(1 s), αλλά δε βρίσκω αυτή τη σκέψη σωστή, γιατί το πηλίκο αυτό μπορεί να σπάσει σε Ν κλάσματα με παρονομαστή 1 s και έτσι είναι σα να θεωρώ ότι κάθε μεταβολή διαρκεί 1 s. Κάθε τέτοια όμως μεταβολή διαρκεί όσο και η κρούση κάθε μορίου, δηλαδή απειροελάχιστο χρόνο. Έχω μπερδευτεί. 
Απάντηση: 


7. Ξεκίνησα με το θεώρημα έργου – ενέργειας και βρέθηκα σε αδιέξοδο.
Δοκίμασα να λύσω την παρακάτω άσκηση ελαστικής κρούσης:
Η μπάλα πετιέται οριζόντια με αρχική ταχύτητα υ­0 από το σημείο Α του αριστερού τοιχώματος ενός φρεατίου και συγκρούεται ελαστικά με το απέναντι δεξί τοίχωμα. Τελικά πέφτει στη βάση του φρεατίου στο σημείο Β, που βρίσκεται στην ίδια κατακόρυφο με το Α. Τριβές δεν υπάρχουν. ­ 
Η ερώτηση είναι, 
ποια από τις παρακάτω παραστάσεις 

       α. L√g/h   ,  β. L√2g/h   ,  γ. 2L√g/h   ,   δ. 2L√2g/h   

αντιστοιχεί στην αρχική ταχύτητα υ0.
Ξεκίνησα με το θεώρημα έργου – ενέργειας και κατέληξα στη σχέση:
                                                          υΒ2 = υ02 + 2gh
Εδώ σταμάτησα, δεν μπορώ να προχωρήσω άλλο. Δεν ξέρω πώς να χρησιμοποιήσω το L για να απαλλαγώ από την τελική ταχύτητα υΒ.
Απάντηση:  

Σάββατο 29 Σεπτεμβρίου 2018

Ελαστική κρούση σε δυο διαστάσεις.

                         Δύο παραλλαγές της 5.41 του σχολικού

 1η 

Μια σφαίρα Α ακτίνας R κινείται με ταχύτητα v και συγκρούεται ελαστικά με μια άλλη όμοια σφαίρα Β που αρχικά ηρεμεί. Το κέντρο της σφαίρας Β βρίσκεται σε απόσταση b από την ευθεία στην οποία κινείται το κέντρο της Α.
Να βρείτε τις ταχύτητες των δύο σφαιρών μετά την κρούση.



 

Ένα μικρό σφαιρικό σώμα, αμελητέων διαστάσεων, προσπίπτει με ταχύτητα v πάνω σε μια αρχικά ακίνητη σφαίρα ακτίνας R. Τα δύο σώματα έχουν ίσες μάζες. Το κέντρο της σφαίρας βρίσκεται σε απόσταση b (b<R) από την ευθεία πάνω στην οποία κινείται αρχικά η μικρή σφαίρα.
Αν η κρούση είναι ελαστική, τότε η ταχύτητα της μικρής σφαίρας μετά την κρούση θα είναι: 

_______
                                    α.  v 1- (b/R)2 ,       β. vbR ,       γ.  vb2R


Απάντηση:

Τετάρτη 26 Σεπτεμβρίου 2018

Το πρότυπο του απλού αρμονικού ταλαντωτή



Η συνέχεια του θεωρητικού σημειώματος σε pdf εδώ


Απλή αρμονική ταλάντωση συστήματος "ιδανικού κατακόρυφου ελατηρίου - μάζας" σε πεδίο βαρύτητας

   Το παρακάτω άρθρο, είναι η συνέχεια της ανάρτησης  "το πρότυπο του απλού αρμονικού ταλαντωτή". Είχε δημοσιευτεί πέρσι τον Αύγουστο. Το ξαναδίνω αναθεωρημένο στην κυκλοφορία σε τέσσερα μέρη και εμπλουτισμένο με δύο σχετικές ασκήσεις. 
  • Το πρώτο μέρος είναι αρκετά τυπικό και περιέχει βασικές γνώσεις α.α.τ. 
  • Το δεύτερο περιγράφει πώς δυο καλοί μαθητές μπορούν εύκολα να μπλέξουν "σαν τον Ηρακλή με τις κουβαρίστρες", ακριβώς επειδή είναι καλοί. Ευτυχώς που είναι δύο! 
  • Στο τρίτο μέρος οι συμμαθητές "γεννούν" μια ιδέα που ξεκαθαρίζει τη σχέση μεταξύ των τριών δυναμικών ενεργειών: βαρύτητας, ελαστικότητας και ταλάντωσης. 
  • Στο τέταρτο μέρος γίνεται αναλυτική παρουσίαση δύο σχετικών ασκήσεων.
Το άρθρο διαβάζεται εύκολα και από μαθητές. Απαιτεί, ίσως, λίγο παραπάνω συγκέντρωση, θα ωφεληθούν όμως και κάποια από αυτά ίσως τα βρουν μπροστά τους!
  • ΜΕΡΟΣ 1ο: Τα βασικά (μαζί με μια εφαρμογή)
  • ΜΕΡΟΣ 2ο:  Όπου δυο μαθητές, προσπαθούν να δώσουν απάντηση σε μια απλή αλλά ενδιαφέρουσα ερώτηση. 
  • ΜΕΡΟΣ 3ο: Όπου οι δυο μαθητές κάνουν μια "σημαντική ανακάλυψη" για τη Μηχανική ενέργεια ταλάντωσης συστήματος "κατακόρυφου ελατηρίου – μάζας".
  • ΜΕΡΟΣ 4ο: Όλες οι δυναμικές ενέργειες μαζί. (Δύο ασκήσεις με τη λύση τους)

Παρασκευή 21 Σεπτεμβρίου 2018

Απλή Αρμονική Ταλάντωση. Δέκα ερωτήσεις


ΕΡΩΤΗΣΕΙΣ
Θέμα Α
1. Στην α.α.τ το πηλίκο της επιτάχυνσης του σώματος προς την απομάκρυνσή του από το κέντρο της ταλάντωσης  είναι, κάθε στιγμή, μέτρο της
α.  σταθεράς επαναφοράς
β.  γωνιακής συχνότητας
γ. (γωνιακής συχνότητας)2
δ. δύναμης επαναφοράς

2. Για ένα σώμα που εκτελεί α.α.τ η κινητική ενέργεια Κ δίνεται από τη σχέση Κ = Κοσυν2ωt. Η μέγιστη τιμή της δυναμικής  του ενέργειας είναι:
α.  Κο
β.  μηδέν
γ.  Κο/2
δ. αδύνατο να εκτιμήσουμε.

3.  Η δυναμική  ενέργεια ενός σώματος που ταλαντώνεται είναι συνάρτηση της απομάκρυνσή  του x από την κεντρική θέση της τροχιάς του. Αν λ είναι θετική σταθερά, η κίνησή του θα είναι α.α.τ  όταν:
α. U = λx2
β. U = -λx2/2
γ. U = k
δ. U = λx

Τετάρτη 19 Σεπτεμβρίου 2018

Ελαστική κρούση τριών σωμάτων. Ολική μεταφορά.


Είναι γνωστό ότι στην περίπτωση της ελαστικής κρούσης του διπλανού σχήματος, η κινητική ενέργεια του σώματος Α θα μεταφερθεί, τελικά, μέσω του Β, στο Γ. Υπάρχει άλλη περίπτωση ελαστικής κρούσης τριών σωμάτων, όπου τελικά έχουμε ολική μεταφοράς της κινητικής ενέργειας σε ένα μόνο από αυτά;
Η απάντηση είναι, ΝΑΙ, και όχι μόνο μια, αλλά άπειρες. Αρκεί να επιλέξουμε κατάλληλα μάζες και ταχύτητες. Δείτε για παράδειγμα την παρακάτω απλή εφαρμογή.

Τρεις τέλεια λείες ελαστικές σφαίρες Α, Β και Γ, με μάζες mA = 2 kg, mB = 4kg και mΓ = 8 kg, κινούνται κατά μήκος της ευθείας που ενώνει τα κέντρα τους και προς την ίδια κατεύθυνση με ταχύτητες μέτρων 4 m/s, 1m/s και 0,75 m/s, αντίστοιχα, όπως δείχνει το σχήμα. Αν πρώτα συγκρουστεί η σφαίρα Α με τη Β, και στη συνέχεια η Β με τη Γ, τότε:

Δευτέρα 17 Σεπτεμβρίου 2018

Ελαστική κρούση και ανατροπή


Ένα σώμα Β  σχήματος ορθογωνίου παραλληλεπιπέδου, μάζας 4m, είναι τοποθετημένο πάνω σε ένα οριζόντιο σταθερό τραπέζι. Πάνω του τοποθετούμε ένα όμοιων διαστάσεων σώμα Α μάζας 2m, όπως στο σχήμα.
Μεταξύ της βάσης του σώματος Β και του τραπεζιού υπάρχει τριβή με συντελεστή τριβής ολισθήσεως μ. Δεν υπάρχει τριβή μεταξύ των δύο σωμάτων Α και Β.
Μια μικρή ελαστική σφαίρα μάζας m κινούμενη οριζόντια με ταχύτητα v κατά μήκος μιας νοητής ευθείας, που διέρχεται από το κέντρο μάζας του σώματος Β και είναι κάθετη στην κατακόρυφη πλευρά του, συγκρούεται ελαστικά με το σώμα Β, σε ύψος d πάνω από την επιφάνεια του τραπεζιού.
Α. Η ελάχιστη τιμή της ταχύτητας v (ας την συμβολίσουμε με υ0)  για να ανατραπεί το σώμα Α είναι:
                                    α. 5√ 6μgd   ,     β.   52 √ 6μgd   ,    γ. 5√ 3μgd  

Τρίτη 11 Σεπτεμβρίου 2018

Ταχύτητα απομάκρυνσης προς ταχύτητα προσέγγισης


Δύο σφαιρικές χάντρες Α και Β με μάζες 2m και m, αντίστοιχα, είναι περασμένες σε ένα κατακόρυφο λείο κυκλικό σύρμα ακτίνας 10 m, κατά μήκος του οποίου μπορούν να ολισθαίνουν χωρίς τριβές. Η χάντρα Β βρίσκεται ακίνητη στο κατώτερο σημείο του σύρματος, ενώ η χάντρα Α αρχικά συγκρατείται σε μια θέση, που βρίσκεται στην ίδια οριζόντιο ευθεία με το κέντρο του κυκλικού σύρματος. Αν δώσουμε στην Α μια αρχική ταχύτητα ίση με 60 m/s προς τα κάτω θα συγκρουστεί με τη Β, η οποία, στη συνέχεια, θα ανέλθει ως το αντιδιαμετρικό σημείο από το οποίο ξεκίνησε η Α.
α. Να δείξετε ότι η παραπάνω κρούση δεν είναι ελαστική.
β. Να βρείτε το πηλίκο της ταχύτητας, με την οποία οι χάντρες στο τέλος της κρούσης απομακρύνονται η μία από την άλλη, προς την ταχύτητα της μεταξύ τους προσέγγισης ελάχιστα πριν την κρούση.
γ. Αν η κρούση ήταν ελαστική ποια θα ήταν η τιμή του παραπάνω πηλίκου;
Δίνεται η επιτάχυνση βαρύτητας g = 9,8 m/s2


Παρασκευή 7 Σεπτεμβρίου 2018

Επαναληπτικές Πανελληνίων 2018 στη Φυσική : Θέματα - Απαντήσεις





                                           Θέματα  -  Αναλυτικές Απαντήσεις






Μια κεντρική κρούση όπου υ1,τελ ≤ υ1,αρχ/2


Απορία μαθητή
Μου δόθηκε η εξής ερώτηση:
Θεωρείστε δύο λεία σφαιρικά σώματα Σ1 και Σ2 με ίσες μάζες. Το Σ2 είναι ακίνητο πάνω σε λείο οριζόντιο επίπεδο, ενώ το Σ1 κινείται πάνω στο επίπεδο αυτό και πλησιάζει το Σ2 με ταχύτητα υ. Υποθέστε ότι μετά την κρούση τα δύο σώματα Σ1 και Σ2 έχουν ταχύτητες υ1 και υ2, αντίστοιχα, οι οποίες είναι συγγραμμικές με την υ και έχουν την ίδια φορά με αυτήν.
Να δείξετε ότι υ1 υ/2 .
     Να πώς σκέφτηκα: Αφού όλες οι ταχύτητες είναι συγγραμμικές και έχουν την ίδια φορά, μπορώ να υποθέσω ότι  υ ≥0, υ1≥0, υ2≥0.
    Εφαρμόζω Α.Δ.Ο:                    mυ = mυ1 + mυ2 
                                                        υ = υ1 + υ2              (1)
   Στη συνέχεια όμως μπερδεύομαι και δεν μπορώ να σκεφτώ πώς θα αποδείξω αυτό που μου ζητούν. Από την εκφώνηση προκύπτει ότι η κρούση είναι κεντρική, δεν δίνεται όμως καμιά άλλη πληροφορία. Γνωρίζω ότι η τιμή των τελικών ταχυτήτων  διαμορφώνεται ανάλογα με το είδος της κρούσης. Έτσι, αν θεωρήσουμε, για παράδειγμα, ότι υ = 10 m/s και υ2 = 4 m/s, τότε από την παραπάνω σχέση  της Α.Δ.Ο. προκύπτει ότι υ1 = 6 m/s, οπότε δεν έχουμε  υ1 υ/2.  (Σε αυτήν την περίπτωση, βέβαια, το Σ1 πρέπει να περάσει μέσα από το Σ2, αλλά από την εκφώνηση δεν προκύπτει ότι κάτι τέτοιο είναι αδύνατο).
Κάνω κάπου λάθος; Μου έχουν πει ότι η παραπάνω ερώτηση έχει μια πολύ εύκολη απάντηση.
Θα χαρώ πολύ αν μου δώσετε τα φώτα σας.
Νίκος Τ.
Απάντηση: