Η φύση αγαπά την αλήθεια, και η αλήθεια της φύσης διεκδικεί το δικαίωμα να εκτίθεται μόνο σε όσους την ποθούν. Φ. Ντοστογιέφσκι

Εμφάνιση αναρτήσεων με ετικέτα 3.8.γ Ασκήσεις. Εμφάνιση όλων των αναρτήσεων
Εμφάνιση αναρτήσεων με ετικέτα 3.8.γ Ασκήσεις. Εμφάνιση όλων των αναρτήσεων

Τρίτη 31 Μαρτίου 2020

Tο έργο δύναμης σε σύστημα σωμάτων και οι κινητικές ενέργειες


Ένας συμπαγής ομογενής δίσκος μάζας Μ και ακτίνας R είναι τοποθετημένος πάνω σε μια οριζόντια ορθογώνια πλατφόρμα ίσης μάζας Μ και μεγάλου μήκους, που μπορεί να ολισθαίνει πάνω σε λεία οριζόντια επιφάνεια. Ο δίσκος δέχεται σταθερή οριζόντια δύναμη F = 40 Ν και κυλίεται χωρίς να ολισθαίνει πάνω στην πλατφόρμα. Να βρείτε:
α. Πόσο αυξάνεται η κινητική ενέργεια της πλατφόρμας όταν αυτή μετατοπίζεται κατά D = 1 m.
β. Την αντίστοιχη αύξηση της κινητικής ενέργειας του δίσκου λόγω μεταφορικής κίνησης.
γ. Την αύξηση της κινητικής ενέργειας του δίσκου λόγω στροφικής κίνησης.
Δίνεται για τον δίσκο Ιc = (1/2)ΜR2 .

Απάντηση σε pdf: 
Απάντηση σε word:

Τετάρτη 26 Φεβρουαρίου 2020

Τροχαλία και κουβάς

[Εφαρμογή της Α.Δ.Ε όταν ο κουβάς αφήνεται ελεύθερος να κατέβει.]

Χρησιμοποιήστε την αρχή διατήρησης της ενέργειας  για να υπολογίσετε τη γωνιακή ταχύτητα της τροχαλίας που φαίνεται στο σχήμα, τη στιγμή που ο κάδος μάζας m = 3 kg έχει κατέλθει κατά h = 3 m, ξεκινώντας από την ηρεμία. Θεωρείστε αμελητέα τη μάζα του σχοινιού που είναι προσαρτημένο στον κάδο και τυλιγμένο πολλές φορές γύρω από την τροχαλία και ότι δεν γλιστρά καθώς ξετυλίγεται.
Η τροχαλία περιστρέφεται χωρίς τριβές.
Δίνεται η μάζα Μ = 4 kg, η ακτίνα R = 0,6 m και η ροπή αδράνειας I = MR2/2 της  τροχαλίας καθώς και ότι η επιτάχυνση βαρύτητας ισούται με g = 10 m/s2



Τετάρτη 9 Μαΐου 2018

Πού πήγε η ενέργεια που χάθηκε; (Προσέξτε το θέμα αυτό!)




Απορία μαθητή. Μου δόθηκε η εξής άσκηση:
Η ράβδος του σχήματος είναι οριζόντια και μπορεί να στρέφεται γύρω από κατακόρυφο άξονα που διέρχεται από το μέσον της. Το μήκος της ράβδου είναι L και η μάζα της Μ. Σε απόσταση r από τον άξονα περιστροφής βρίσκονται δύο μεταλλικοί δακτύλιοι μάζας m, ο καθένας, που συνδέονται μεταξύ τους με ένα νήμα. Το σύστημα στρέφεται γύρω από τον άξονα με γωνιακή συχνότητα ω0. Κάποια στιγμή το νήμα σπάει και οι δακτύλιοι, λόγω αδράνειας, ωθούνται στα άκρα της ράβδου, όπου δεν υπάρχει κανένα εμπόδιο να τους συγκρατήσει κι έτσι πέφτουν στο έδαφος. Να υπολογίστε τη γωνιακή ταχύτητα του συστήματος και την κινητική ενέργεια περιστροφής του, τη στιγμή που οι δύο δακτύλιοι φτάνουν στο τέλος της ράβδου. Η ροπή αδράνειας της ράβδου ως προς άξονα που διέρχεται από το κέντρο μάζας της είναι  Iρ = ML2/12.

Γνωρίζω ότι πρέπει να χρησιμοποιήσω την αρχή διατήρησης στροφορμής:
                                         Ι0ω0 = Ιτελωτελ (=L)   ωτελ = Ι0ω0τελ
Και επομένως: 
                                             ΔΚσροφ =  (1/2)Lωτελ - (1/2)Lω0 < 0,
δηλαδή, έχουμε απώλεια ενέργειας.
Έχω όμως τις εξής απορίες:
1. Δεν έχουμε εξωτερικές δυνάμεις και ροπές στο σύστημα. Γιατί παραβιάζεται εδώ η αρχή διατήρησης της ενέργειας:
                                                       (1/2)Ι0ω02 =  (1/2)Ιτελωτελ2
Απ’ όπου προκύπτει αποτέλεσμα:  ωτελ = ω0( Ι0τελ) < ω0  και ΔΚ = 0, εντελώς διαφορετικό; Πού πήγε η ενέργεια που χάθηκε;
2. Όταν οι δακτύλιοι φύγουν από τη ράβδο, η νέα της γωνιακή ταχύτητα θα υπολογιστεί από τη σχέση 
                                           Ιρ· ωνεα = (Ιρ+ 2mL2/4) ωτελ;

Είναι μια όμορφη απορία, που απ' την εμπειρία μου γνωρίζω ότι την έχουν και άλλοι μαθητές. 

Ας πάρουμε ένα-ένα τα ερωτήματα:
1. Δεν παραβιάζεται η αρχή διατήρησης της μηχανικής ενέργειας!
Στην εξίσωσή σου  (1/2)Ι0ω02 =  (1/2)Ιτελωτελ2,  θεωρείς ότι το σύστημα, τόσο στην αρχική όσο και στην τελική του κατάσταση, έχει μόνο κινητική ενέργεια λόγω περιστροφής. Όμως, υπάρχει και μια ποσότητα κινητικής ενέργειας  λόγω μεταφορικής κίνησης των δακτυλίων, καθώς αυτοί οδηγούνται, λόγω αδράνειας, προς τα άκρα της ράβδου. Οι δακτύλιοι, και περιστρέφονται και μετατοπίζονται, κι έτσι η συνολική τους ταχύτητα δεν είναι ίδια με την ταχύτητα των σημείων της ράβδου πάνω στα οποία εφάπτονται.
Πρέπει λοιπόν να διορθωθεί η προηγούμενη σχέση στην εξής
                                    (1/2)Ι0ω02 =  (1/2)Ιτελωτελ2+ 2(1/2)mυδ2    (1)
Όπου υδ είναι η ταχύτητα λόγω μεταφορικής κίνησης με την οποία φτάνουν οι δακτύλιοι στα άκρα της ράβδου.
Έτσι, στην εξίσωση (1) της Α.Δ.Μ.Ε υπάρχουν δύο άγνωστοι, το ωτελ και η υδ και άρα, αφού το σύστημα είναι μονωμένο, πρέπει να καταφύγεις και σε μια άλλη αρχή διατήρησης, αυτή της Α.Δ.Σ   0ω0 = Ιτελωτελ), απ’ όπου άμεσα προκύπτει το ωτελ. Ύστερα, από την εξίσωση (1), μπορείς να υπολογίσεις και την (ακτινική) ταχύτητα  με την οποία φτάνουν οι δακτύλιοι στα άκρα της ράβδου.
2.  Όχι. Όταν οι δακτύλιοι εγκαταλείψουν τη ράβδο, αυτή θα συνεχίσει να κινείται με γωνιακή ταχύτητα ωτελ, (ίση με αυτήν που είχε το σύστημα, τη στιγμή που οι δακτύλιοι έφταναν στα άκρα της ράβδου).
Η εξήγηση είναι απλή:  Μπορεί οι δακτύλιοι να εγκαταλείπουν τη ράβδο, κρατάνε ίδια όμως τη στροφορμή τους, αφού δεν δέχονται κάποια εξωτερική ροπή. Πρέπει όμως να κρατήσει ίδια τη στροφορμή της και η ράβδος, αφού το σύστημα είναι μονωμένο, και αυτό σημαίνει ότι δε θα αλλάξει η γωνιακή της ταχύτητα.  
Στη σχέση, που γράφεις, έχεις παραλείψει τη στροφορμή που έχουν οι δακτύλιοι όταν εγκαταλείψουν τη ράβδο. Πρέπει να διορθωθεί στην εξής:
                         Ιρ· ωνεα + (2mL2/4) ωτελ = (Ιρ+2mL2/4) ωτελ 
Είναι φανερό ότι από αυτήν προκύπτει ωνεα = ωτελ.

Παρατήρηση: Υπόψη ότι, επειδή το σύστημα είναι μονωμένο, δεν συνεπάγεται ότι έχουμε και διατήρηση της μηχανικής του ενέργειας. Αυτό ισχύει μόνο αν οι δυνάμεις μέσα σε αυτό είναι συντηρητικές.  Υπάρχει, για παράδειγμα, η άσκηση 4.60 του σχολικού βιβλίου. Εκεί οι δακτύλιοι σταματάνε στα εμπόδια που υπάρχουν στα δύο άκρα της ράβδου. Είναι φανερό ότι στην άσκηση αυτή δεν ισχύει η Α.Δ.Μ.Ε, αφού οι δακτύλιοι συγκρούονται με τα εμπόδια και θεωρούμε ότι παραμένουν εκεί (πλαστική κρούση). Όλη η κινητική τους ενέργεια λόγω της ακτινικής τους ταχύτητας μετατρέπεται σε θερμική. Όταν όμως το σύστημα είναι μονωμένο, ισχύει πάντα η αρχή διατήρησης της στροφορμής του.

Τρίτη 8 Μαΐου 2018

Τρεις κύλινδροι


Τρεις παρόμοιοι συμπαγείς και ομογενείς κύλινδροι και ένα αβαρές σχοινί αποτελούν το σύστημα του σχήματος. Όταν κύλινδρος 3 κατεβαίνει, ο 1 κυλίεται χωρίς ολίσθηση πάνω στην οριζόντια επιφάνεια ενός τραπεζιού και το σχοινί, χωρίς να ολισθαίνει, θέτει σε περιστροφή τον κύλινδρο 2.