Η φύση αγαπά την αλήθεια, και η αλήθεια της φύσης διεκδικεί το δικαίωμα να εκτίθεται μόνο σε όσους την ποθούν. Φ. Ντοστογιέφσκι

Εμφάνιση αναρτήσεων με ετικέτα 3.7. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΔΙΑΤΗΡΗΣΗ ΣΤΡΟΦΟΡΜΗΣ. Εμφάνιση όλων των αναρτήσεων
Εμφάνιση αναρτήσεων με ετικέτα 3.7. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΔΙΑΤΗΡΗΣΗ ΣΤΡΟΦΟΡΜΗΣ. Εμφάνιση όλων των αναρτήσεων

Τετάρτη 9 Νοεμβρίου 2022

Η ισορροπία και η στροφορμή σε ένα παιδικό παιχνίδι

 Ένα παιδικό παιχνίδι αποτελείται από την τραπεζοειδή ξύλινη επιφάνεια του σχήματος, η οποία περιστρέφεται γύρω από τον σταθερό κατακόρυφο άξονα zz΄.

Το κυλινδρικό σώμα Σ, μάζας m = 0,18 kg, φέρει οπή κατά μήκος  του άξονά του και μπορεί να ολισθαίνει χωρίς τριβές πάνω στη λεπτή ράβδο ΑΒ.

Όταν το ξύλινο τραπέζιο περιστρέφεται με σταθερή γωνιακή ταχύτητα ω, το σώμα ισορροπεί σε απόσταση ℓ = 3/8 m από το Β.

α. Να βρείτε τη στροφορμή του σώματος Σ ως προς τον άξονα zz΄. Δίνεται συνθ = 0,6.

β. Διπλασιάζουμε τη γωνιακή ταχύτητα περιστροφής. Να αποδείξετε ότι το σώμα Σ θα σταθεροποιηθεί σε μια θέση, πλησιέστερα προς τον άξονα περιστροφής, και ότι στη θέση αυτή η κινητική του ενέργεια είναι τέσσερις φορές μικρότερη από την αρχική.

γ. Πόση είναι η στροφορμή του Σ στη νέα θέση ισορροπίας του;

δ. Αν ο διπλασιασμός της γωνιακής ταχύτητας έγινε με σταθερή γωνιακή επιτάχυνση αγων = 5 rad/sec2 να υπολογίσετε το μέτρο της συνολικής ροπής που ασκήθηκε το σώμα Σ.

Οι διαστάσεις  του κυλινδρικού σώματος να θεωρηθούν αμελητέες.

Η απάντηση:

Κυριακή 26 Απριλίου 2020

Δύο δίσκοι χόκεϊ επί πάγου


Δύο δίσκοι χόκεϋ επί πάγου ακτίνων R και μάζας m κινούνται ο ένας προς τον άλλο σε μια οριζόντια επιφάνεια, χωρίς τριβή, με ίσες και αντίθετες ταχύτητες σε μια πορεία μετωπικής σύγκρουσης. Και οι δύο περιστρέφονται αριστερόστροφα γύρω από το αντίστοιχο κέντρο μάζας τους με γωνιακή ταχύτητα ω, όπως φαίνεται στην παρακάτω εικόνα.
α. Υπολογίστε τη συνολική ορμή και στροφορμή του συστήματος των δύο δίσκων πριν την κρούση.
β. Είναι η συνολική στροφορμή του συστήματος των δίσκων μετά την κρούση ίδια με αυτήν πριν την κρούση;
γ. Αν η κρούση είναι πλαστική και οι δύο δίσκοι συγκολλώνται σε ένα διπλό δίσκο, ποια είναι η ροπή αδράνειας του διπλού δίσκου ως προς το κέντρο μάζας του; (Δίνεται η ροπή αδράνειας κάθε δίσκου ως προς το δικό του κέντρο μάζας του ίση με ½ mR2).
δ. Θα περιστρέφεται ο διπλός δίσκος γύρω από το κέντρο μάζας του; Αν ναι να υπολογίσετε το τη γωνιακή του ταχύτητα, αν όχι να εξηγείστε γιατί. 

Απάντηση σε pdf:  
 Απάντηση σε word:


Παρασκευή 25 Μαΐου 2018

Συνδυαστική Μηχανικής Στερεού – Κρούσης - Ανακύκλωσης


Το σύστημα “ράβδος – σφαιρίδιο Σ1” του σχήματος, μπορεί να περιστρέφεται, χωρίς τριβές, γύρω από ακλόνητο οριζόντιο άξονα, κάθετο στο άκρο Ο της ράβδου. Η μάζα του Σ1 είναι ίση με τα 2/3 της μάζας Μ της ράβδου, ενώ του Σ2 είναι τετραπλάσια της μάζας της ράβδου.
Αφήνουμε ελεύθερο το σύστημα από την οριζόντια θέση. Όταν φτάσει στην κατακόρυφη θέση συγκρούεται με το σφαιρίδιο Σ2 και ακινητοποιείται, ενώ το Σ2, δεμένο στην άκρη ενός σχοινιού μήκους L/2,, αρχίζει να εκτελεί κυκλική κίνηση σε κατακόρυφο επίπεδο, με κέντρο το ακλόνητο άλλο άκρο του σχοινιού.

Τετάρτη 9 Μαΐου 2018

Πού πήγε η ενέργεια που χάθηκε; (Προσέξτε το θέμα αυτό!)




Απορία μαθητή. Μου δόθηκε η εξής άσκηση:
Η ράβδος του σχήματος είναι οριζόντια και μπορεί να στρέφεται γύρω από κατακόρυφο άξονα που διέρχεται από το μέσον της. Το μήκος της ράβδου είναι L και η μάζα της Μ. Σε απόσταση r από τον άξονα περιστροφής βρίσκονται δύο μεταλλικοί δακτύλιοι μάζας m, ο καθένας, που συνδέονται μεταξύ τους με ένα νήμα. Το σύστημα στρέφεται γύρω από τον άξονα με γωνιακή συχνότητα ω0. Κάποια στιγμή το νήμα σπάει και οι δακτύλιοι, λόγω αδράνειας, ωθούνται στα άκρα της ράβδου, όπου δεν υπάρχει κανένα εμπόδιο να τους συγκρατήσει κι έτσι πέφτουν στο έδαφος. Να υπολογίστε τη γωνιακή ταχύτητα του συστήματος και την κινητική ενέργεια περιστροφής του, τη στιγμή που οι δύο δακτύλιοι φτάνουν στο τέλος της ράβδου. Η ροπή αδράνειας της ράβδου ως προς άξονα που διέρχεται από το κέντρο μάζας της είναι  Iρ = ML2/12.

Γνωρίζω ότι πρέπει να χρησιμοποιήσω την αρχή διατήρησης στροφορμής:
                                         Ι0ω0 = Ιτελωτελ (=L)   ωτελ = Ι0ω0τελ
Και επομένως: 
                                             ΔΚσροφ =  (1/2)Lωτελ - (1/2)Lω0 < 0,
δηλαδή, έχουμε απώλεια ενέργειας.
Έχω όμως τις εξής απορίες:
1. Δεν έχουμε εξωτερικές δυνάμεις και ροπές στο σύστημα. Γιατί παραβιάζεται εδώ η αρχή διατήρησης της ενέργειας:
                                                       (1/2)Ι0ω02 =  (1/2)Ιτελωτελ2
Απ’ όπου προκύπτει αποτέλεσμα:  ωτελ = ω0( Ι0τελ) < ω0  και ΔΚ = 0, εντελώς διαφορετικό; Πού πήγε η ενέργεια που χάθηκε;
2. Όταν οι δακτύλιοι φύγουν από τη ράβδο, η νέα της γωνιακή ταχύτητα θα υπολογιστεί από τη σχέση 
                                           Ιρ· ωνεα = (Ιρ+ 2mL2/4) ωτελ;

Είναι μια όμορφη απορία, που απ' την εμπειρία μου γνωρίζω ότι την έχουν και άλλοι μαθητές. 

Ας πάρουμε ένα-ένα τα ερωτήματα:
1. Δεν παραβιάζεται η αρχή διατήρησης της μηχανικής ενέργειας!
Στην εξίσωσή σου  (1/2)Ι0ω02 =  (1/2)Ιτελωτελ2,  θεωρείς ότι το σύστημα, τόσο στην αρχική όσο και στην τελική του κατάσταση, έχει μόνο κινητική ενέργεια λόγω περιστροφής. Όμως, υπάρχει και μια ποσότητα κινητικής ενέργειας  λόγω μεταφορικής κίνησης των δακτυλίων, καθώς αυτοί οδηγούνται, λόγω αδράνειας, προς τα άκρα της ράβδου. Οι δακτύλιοι, και περιστρέφονται και μετατοπίζονται, κι έτσι η συνολική τους ταχύτητα δεν είναι ίδια με την ταχύτητα των σημείων της ράβδου πάνω στα οποία εφάπτονται.
Πρέπει λοιπόν να διορθωθεί η προηγούμενη σχέση στην εξής
                                    (1/2)Ι0ω02 =  (1/2)Ιτελωτελ2+ 2(1/2)mυδ2    (1)
Όπου υδ είναι η ταχύτητα λόγω μεταφορικής κίνησης με την οποία φτάνουν οι δακτύλιοι στα άκρα της ράβδου.
Έτσι, στην εξίσωση (1) της Α.Δ.Μ.Ε υπάρχουν δύο άγνωστοι, το ωτελ και η υδ και άρα, αφού το σύστημα είναι μονωμένο, πρέπει να καταφύγεις και σε μια άλλη αρχή διατήρησης, αυτή της Α.Δ.Σ   0ω0 = Ιτελωτελ), απ’ όπου άμεσα προκύπτει το ωτελ. Ύστερα, από την εξίσωση (1), μπορείς να υπολογίσεις και την (ακτινική) ταχύτητα  με την οποία φτάνουν οι δακτύλιοι στα άκρα της ράβδου.
2.  Όχι. Όταν οι δακτύλιοι εγκαταλείψουν τη ράβδο, αυτή θα συνεχίσει να κινείται με γωνιακή ταχύτητα ωτελ, (ίση με αυτήν που είχε το σύστημα, τη στιγμή που οι δακτύλιοι έφταναν στα άκρα της ράβδου).
Η εξήγηση είναι απλή:  Μπορεί οι δακτύλιοι να εγκαταλείπουν τη ράβδο, κρατάνε ίδια όμως τη στροφορμή τους, αφού δεν δέχονται κάποια εξωτερική ροπή. Πρέπει όμως να κρατήσει ίδια τη στροφορμή της και η ράβδος, αφού το σύστημα είναι μονωμένο, και αυτό σημαίνει ότι δε θα αλλάξει η γωνιακή της ταχύτητα.  
Στη σχέση, που γράφεις, έχεις παραλείψει τη στροφορμή που έχουν οι δακτύλιοι όταν εγκαταλείψουν τη ράβδο. Πρέπει να διορθωθεί στην εξής:
                         Ιρ· ωνεα + (2mL2/4) ωτελ = (Ιρ+2mL2/4) ωτελ 
Είναι φανερό ότι από αυτήν προκύπτει ωνεα = ωτελ.

Παρατήρηση: Υπόψη ότι, επειδή το σύστημα είναι μονωμένο, δεν συνεπάγεται ότι έχουμε και διατήρηση της μηχανικής του ενέργειας. Αυτό ισχύει μόνο αν οι δυνάμεις μέσα σε αυτό είναι συντηρητικές.  Υπάρχει, για παράδειγμα, η άσκηση 4.60 του σχολικού βιβλίου. Εκεί οι δακτύλιοι σταματάνε στα εμπόδια που υπάρχουν στα δύο άκρα της ράβδου. Είναι φανερό ότι στην άσκηση αυτή δεν ισχύει η Α.Δ.Μ.Ε, αφού οι δακτύλιοι συγκρούονται με τα εμπόδια και θεωρούμε ότι παραμένουν εκεί (πλαστική κρούση). Όλη η κινητική τους ενέργεια λόγω της ακτινικής τους ταχύτητας μετατρέπεται σε θερμική. Όταν όμως το σύστημα είναι μονωμένο, ισχύει πάντα η αρχή διατήρησης της στροφορμής του.

Δευτέρα 30 Απριλίου 2018

Η απάντηση στο παράδοξο της συνολικής στροφορμής δύο δίσκων


Δεν έχουμε εδώ διατήρηση της στροφορμής του συστήματος των δύο δίσκων. Αν ίσχυε, θα είχαμε: Ι1ω0 = Ι1ω1 – Ι2ω2, δηλαδή Ι1ω1 = Ι1ω0 + Ι2ω2, οπότε ω1 > ω0 και άρα η κινητική ενέργεια κάθε δίσκου θα αύξαινε, άρα και του συστήματος. Φυσικά, αυτό αντίκειται στην Α.Δ.Ε. συστήματος.
Τι συμβαίνει λοιπόν; 
Κοιτάξτε το αριστερό σχήμα (α): Θεωρήστε τους δύο δίσκους πάνω σε λείο οριζόντιο επίπεδο. Είναι η στιγμή που φέρνουμε σε επαφή τις περιφέρειες των  δύο δίσκων. Έχουν σχεδιαστεί οι δύο τριβές ολίσθησης (με κόκκινο χρώμα) στις περιφέρειες των δύο δίσκων. Είναι δύο δυνάμεις αντίθετες (δράση – αντίδραση), που δρουν στα σημεία επαφής των περιφερειών των δύο δίσκων. Επειδή οι εξωτερικές δυνάμεις, βάρος -  αντίδραση δαπέδου, έχουν συνισταμένη μηδέν, κάθε δίσκος δέχεται μια καθαρή δύναμη Τ, που παρουσιάζει ροπή ως προς το κέντρο μάζας του. Το αποτέλεσμα είναι γνωστό: Ο δίσκος 2 θα εκτελέσει μια σύνθετη κίνηση, μεταφορική κατά τη διεύθυνση της Τ και στροφική γύρω από το κέντρο μάζας του, κατά τη φορά της ροπής της Τ. Αντίστοιχα, ο δίσκος 1 θα εκτελέσει και αυτός μια μεταφορική κίνηση κατά τη φορά της Τ, ενώ η στροφική κίνηση θα περιοριστεί και θα μειωθεί (λόγω της ροπής της Τ) η γωνιακή του ταχύτητα. Έτσι, σε ελάχιστο χρονικό διάστημα, οι δύο δίσκοι θα απομακρυνθούν κινούμενοι όπως στο σχήμα (β).
Όμως, στο πρόβλημά μας, υπάρχουν δύο ακλόνητοι άξονες περιστροφής κάθετοι στα κέντρα των δύο δίσκων   και, όπως φαίνεται από την παραπάνω ανάλυση, αυτοί οι δύο άξονες δε θα επιτρέψουν τη μεταφορική κίνηση των δύο δίσκων. Πρέπει, λοιπόν, στη διάρκεια που οι δύο περιφέρειες ασκούν τριβή η μία στην άλλη, ο άξονας κάθε δίσκου να ασκεί δύναμη αντίθετη της τριβής που δέχεται, (στο σχήμα γ φαίνονται με μπλε χρώμα), ώστε να ισχύει σε καθένα δίσκο η συνθήκη ΣF = 0*. 

Οι δυνάμεις αυτές των αξόνων είναι εξωτερικές δυνάμεις, και για το σύστημα των δύο δίσκων αποτελούν ζεύγος εξωτερικών δυνάμεων. Αν γνωρίζουμε τις τριβές Τ, τότε στο σύστημα των δύο δίσκων ενεργεί μια εξωτερική ροπή -Τ(r1 + r2) κατά τη φορά των δεικτών του ρολογιού (αρνητική).

Επειδή η εξωτερική ροπή έχει φορά αντίθετη από την αρχική στροφορμή του συστήματος, η στροφορμή του συστήματος μειώνεται.

* Ουσιαστικά, η ροπή Tr1 ή Tr2, σε κάθε δίσκο, είναι η ροπή του ζεύγους των δυνάμεων Τ που ενεργεί σε καθένα από αυτούς.

Στο σύστημα των δύο δίσκων ενεργούν, επίσης, και άλλα δύο ζεύγη δυνάμεων με μηδενική ροπή, αφού οι άξονές τους ταυτίζονται. Είναι οι οριζόντιες δυνάμεις Ν με τις οποίες οι άξονες κρατούν σε επαφή τους δύο δίσκους (οι κόκκινες, που είναι εσωτερικές στο σύστημα των δύο δίσκων, απαραίτητες για την εμφάνιση των τριβών, Τ = μΝ) και οι μπλε που είναι εξωτερικές δυνάμεις από τους δύο άξονες προς τους δίσκους, με συνισταμένη μηδέν.  


Είναι, λοιπόν, φανερό ότι δεν μπορούμε να εφαρμόσουμε καμία από τις αρχές διατήρησης (ενέργειας ή στροφορμής).
Τότε, πώς θα λύσουμε την άσκηση;
Μόνο με τη βοήθεια του θεμελιώδη νόμου της στροφικής κίνησης:
Έστω Δt το χρονικό διάστημα ολίσθησης των περιφερειών των δύο δίσκων. Όταν οι περιφέρειες σταματήσουν να ολισθαίνουν μεταξύ τους, τότε τα σημεία επαφής τους θα έχουν ίσες ταχύτητες (υ1 = υ2  ω1r1 = ω2r2) και έτσι θα σταματήσουν να τρίβονται μεταξύ τους (Τ = 0).
Για κάθε δίσκο ο θεμελιώδης νόμος της στροφικής κίνησης (Στ = ΔLt) παίρνει τη μορφή:
                                 r1 = I11 – ω0)/Δt,   για τον δίσκο 1, και
                                  Τr2 = I22 – 0)/Δt,     για το δίσκο 2
Διαιρούμε:                 
                                  - r1/r2 = [I11 – ω0)]/I2ω2
Από την ισότητα των ταχυτήτων προκύπτει ότι ω2 = ω1r1/r2 και αν θέσουμε αυτή την τιμή του ω2 στην παραπάνω σχέση, θα βρούμε τελικά:
                                      ω1 = (Ι1ω0)/[Ι1 + (r1/r2)2I2]

Παρασκευή 27 Απριλίου 2018

Το παράδοξο της συνολικής στροφορμής δύο δίσκων


 Ένας μαθητής, μου έστειλε το παρακάτω πρόβλημα που τους έδωσε ο καθηγητής τους:

«Οι δύο οριζόντιοι κυκλικοί δίσκοι 1 και 2 μπορούν να περιστρέφονται, ο καθένας, γύρω από ακλόνητο κατακόρυφο άξονα κάθετο στην επιφάνειά τους, που διέρχεται από το κέντρο τους, χωρίς τριβές. Οι ροπές αδράνειάς τους ως προς τον άξονα περιστροφής τους είναι Ι1 και Ι2, αντίστοιχα, και οι ακτίνες τους r1 και r2 .

Αρχικά ο δίσκος 1 περιστρέφεται με σταθερή γωνιακή ταχύτητα ω0 , ενώ ο 2 είναι ακίνητος. Χωρίς να αλλάξουμε τον προσανατολισμό των αξόνων τους, πλησιάζουμε τους δύο δίσκους και τους φέρνουμε σε επαφή. Οι περιφέρειες των δύο δίσκων  γλιστρούν αρχικά η μια ως προς την άλλη, αλλά τελικά η ολίσθηση αυτή σταματά, λόγω της μεταξύ τους τριβής. Να βρείτε την τελική γωνιακή ταχύτητα ω1 του δίσκου 1 ».  

Μου γράφει: « Σκέφτηκα πως δεν μπορώ να πάρω Α.Δ.Μ.Ε για το σύστημα, γιατί οι τριβές μεταξύ των δύο δίσκων θα μετατρέψουν μέρος της κινητικής ενέργειας του δίσκου 1 σε θερμότητα.
Γνωρίζω όμως ότι, εάν η συνολική εξωτερική ροπή σε ένα σύστημα είναι μηδέν, η ολική στροφορμή του συστήματος παραμένει σταθερή. Εδώ, το σύστημα των δύο δίσκων είναι μονωμένο. Οι εξωτερικές δυνάμεις είναι τα βάρη των δύο δίσκων και οι δυνάμεις από τα στηρίγματα των αξόνων περιστροφής. Αυτές όμως εξουδετερώνονται αφού το σύστημα δεν μετατοπίζεται κατακόρυφα, άρα εξουδετερώνονται και οι ροπές τους. Οι δυνάμεις των τριβών ανάμεσα στις περιφέρειες των δύο δίσκων είναι εσωτερικές δυνάμεις και η ολική ροπή των εσωτερικών δυνάμεων είναι μηδενική, αφού αυτές απαντούν κατά ζεύγη και έτσι έχουν αντίθετες ροπές. Αποφάσισα λοιπόν να εφαρμόσω Α.Δ.Σ:

                                                          Ι1ω0 = Ι1ω1 – Ι2ω2     (1)

Το (-) γιατί ο δίσκος 2 θα στραφεί δεξιόστροφα. Όταν παύουν να ολισθαίνουν μεταξύ τους, τα σημεία των περιφερειών των δύο δίσκων έχουν ίδια ταχύτητα, δηλ. 
                                           υ1 = υ2  ή ω1r1 = ω2r2  →  ω2 = ω1r1/ r2
οπότε από την (1) έχουμε τελικά:

                                                        ω1 = Ι1ω0/(Ι1  – Ι2r1/r2)


Όμως ο καθηγητής μου, λέει ότι η λύση αυτή είναι λάθος γιατί το σύστημα δεν είναι μονωμένο  καθώς υπάρχει μια εξωτερική ροπή που ενεργεί πάνω του. Δεν καταλαβαίνω ποια είναι η εξωτερική ροπή στη συγκεκριμένη περίπτωση.
Μπορείτε να μου εξηγήσετε σας παρακαλώ;

Πέμπτη 26 Απριλίου 2018

Κούνια και διατήρηση στροφορμής, η ερώτηση



Το κέντρο μάζας του παιδιού, με λυγισμένα τα γόνατα, βρίσκεται σε απόσταση ΟΒ από τον άξονα περιστροφής της κούνιας, ο οποίος διέρχεται από το σημείο Ο. Η κούνια μαζί με το παιδί αφήνονται από την ηρεμία (θέση 1), και όταν το κέντρο μάζας φτάσει στο χαμηλότερο σημείο Α της τροχιάς του (θέση 3) το παιδί σηκώνεται ξαφνικά όρθιο, ανεβάζοντας έτσι το κέντρο μάζας του από τη θέση Α στην θέση Α΄.

Να επιλέξετε το σωστό σε καθεμιά από τις παρακάτω προτάσεις και να αιτιολογήσετε την επιλογή σας.
Ι. Το μέτρο της στροφορμής του παιδιού, γύρω από το Ο, κατά την άνοδο του κέντρου μάζας του από το Α στο Α΄,

Τρίτη 24 Απριλίου 2018

Κούνια και διατήρηση στροφορμής, η άσκηση


                              
Έστω ότι το κέντρο μάζας (σημείο B) ενός παιδιού, που κάθεται πατώντας με λυγισμένα τα γόνατα σε μια ελαφριά κούνια, βρίσκεται σε ύψος 1,2 m πάνω από το έδαφος. Το βάρος του παιδιού είναι 400 Ν και το κέντρο μάζας του, με λυγισμένα τα γόνατα, απέχει 3,7 m από τον άξονα περιστροφής της κούνιας, ο οποίος διέρχεται από το σημείο Ο. Η κούνια μαζί με το παιδί αφήνονται από την ηρεμία, και όταν το κέντρο μάζας φτάσει στο χαμηλότερο σημείο Α της τροχιάς του το παιδί σηκώνεται ξαφνικά όρθιο, ανεβάζοντας έτσι το κέντρο μάζας του από τη θέση Α στην θέση Α΄, κατά 0,6 m ψηλότερα. Να βρείτε:

Σάββατο 21 Απριλίου 2018

Ένα παιδικό παιχνίδι με μάλλον απρόσμενη συμπεριφορά. (Η ερώτηση)


Ένα παιδικό παιχνίδι αποτελείται από την τραπεζοειδή σφήνα του σχήματος, η οποία περιστρέφεται γύρω από τον σταθερό κατακόρυφο άξονα zz΄.
Το κυλινδρικό σώμα Σ, μάζας m = 0,18 kg, φέρει οπή κατά μήκος  του άξονά του και μπορεί να ολισθαίνει χωρίς τριβές πάνω στη λεπτή ράβδο ΑΒ.
Όταν η σφήνα περιστρέφεται με σταθερή γωνιακή ταχύτητα ω, το σώμα ισορροπεί σε απόσταση από το Β και η στροφορμή του ως προς τον άξονα zz΄ έχει τιμή L.
Αν το σύστημα στρέφεται με γωνιακή ταχύτητα μέτρου ω΄= 2ω, τότε το σώμα ισορροπεί σε μια θέση όπου:

Δευτέρα 20 Μαΐου 2013


Ένα σφαιρίδιο αμελητέων διαστάσεων …


13.  Ένα σφαιρίδιο αμελητέων διαστάσεων εκτελεί κυκλική κίνηση ακτίνας R, όπως φαίνεται στο σχήμα. Τραβάμε το σχοινί και μειώνουμε την ακτίνα περιστροφής του σφαιριδίου στο μισό. Τότε η γωνιακή ταχύτητα περιστροφής του σφαιριδίου γύρω από το κέντρο της κυκλικής τροχιάς:
α) παραμένει ίδια.
β) διπλασιάζεται.
γ) υποδιπλασιάζεται
δ) τετραπλασιάζεται.
Να δικαιολογήσετε την απάντησή σας.


Δύο ομογενείς οριζόντιοι δίσκοι …


14.  Δυο ομογενείς οριζόντιοι δίσκοι μπορούν να περιστρέφονται γύρω από κοινό κατακόρυφο άξονα που διέρχεται από τα κέντρα μάζας τους όπως φαίνεται στο σχήμα. Αρχικά περιστρέφεται μόνο ο δίσκος 1 ενώ ο 2 είναι ακίνητος. Η ροπή αδράνειας I1 του δίσκου 1 είναι άγνωστη ενώ του δίσκου 2 είναι  Ι2= 4 kg.m2. Κάποια στιγμή ο δίσκος 2 αφήνεται να πέσει πάνω στο δίσκο 1 με τον οποίο και προσκολλάται. Στο διάγραμμα φαίνεται πώς μεταβάλλεται η στροφορμή του δίσκου 1
Από τα παραπάνω συνάγεται ότι η ροπή αδράνειας του δίσκου 1 είναι:
α. 1 kg.m2       β. 4 kg.m2      γ. 5 kg.m2        δ. 6 kg.m2
Να δικαιολογήσετε την απάντησή σας. 


Μια γυναίκα κάθεται σε κάθισμα …



15. Μια γυναίκα κάθεται σε κάθισμα που μπορεί να περιστρέφεται χωρίς τριβές γύρω από τον κατακόρυφο άξονά του. Η γυναίκα κρατά στα χέρια της έναν οριζόντιο περιστρεφόμενο χωρίς τριβές τροχό ποδηλάτου του οποίου η στροφορμή κατά τον κατακόρυφο άξονά του είναι  L0. Το κάθισμα στην κατάσταση αυτή είναι ακίνητο. Κάποια στιγμή η γυναίκα περιστρέφει τον τροχό γύρω από οριζόντιο άξονα κατά 1800, ώστε η πάνω επιφάνεια του τροχού να έρθει από κάτω. Μετά από αυτό το σύστημα γυναίκα – κάθισμα θα έχει αποκτήσει στροφορμή με μέτρο:
α. 2 L0.   β. L0.  γ. L0/2   δ. 0
Α.  Να επιλέξετε το γράμμα που αντιστοιχεί στο σωστό συμπλήρωμα.
Β. Να δικαιολογήσετε την επιλογή σας.


Κυριακή 24 Μαρτίου 2013

Επιδεικνύοντας ένα κλασσικό πείραμα



Μια πειραματική επίδειξη, που συχνά γίνεται στις αίθουσες διδασκαλίας, είναι αυτή ενός μαθητή που κρατά από τον άξονά της μια περιστρεφόμενη ρόδα ποδηλάτου ενώ πατά πάνω σε μια αρχικά ακίνητη πλατφόρμα που μπορεί να περιστρέφεται ελεύθερα. Ο άξονας περιστροφής του τροχού είναι αρχικά οριζόντιος (εικόνα a) και ο μαθητής προσπαθεί να αλλάξει τον προσανατολισμό του έτσι ώστε να γίνει κατακόρυφος (εικόνα b). Καθώς αλλάζει τον προσανατολισμό του τροχού, η πλατφόρμα αρχίζει να περιστρέφεται αντίθετα από  τη φορά περιστροφής του τροχού. Αν θεωρήσουμε τις τριβές που αντιτίθενται στην περιστροφή της πλατφόρμας αμελητέες, τότε αυτή μαζί με το μαθητή θα περιστρέφονται σ’ όλη τη διάρκεια που η ρόδα συγκρατείται με τον άξονά της κατακόρυφο. Αν ο μαθητής επαναφέρει τον τροχό στον αρχικό του προσανατολισμό, η περιστροφή της πλατφόρμας σταματά.
Η πλατφόρμα μπορεί να …

Δείτε 

  • Όλο το θεωρητικό σημείωμα εδώ.
  • Ένα σχετικό βίντεο εδώ.

Παρασκευή 30 Μαρτίου 2012

ΑΡΧΗ ΔΙΑΤΗΡΗΣΗΣ ΤΗΣ ΣΤΡΟΦΟΡΜΗΣ – ΘΕΜΑ Β


Μια ερώτηση, σε δύο πολύ διαφορετικές εμφανίσεις.
Πώς μια ερώτηση, εύκολη για μαθητές, μπορεί να γίνει δύσκολη ακόμη και για καθηγητές.
α. Δυο ποδηλάτες πάνω σε περιστρεφόμενη πλατφόρμα.(Η «εύκολη» εμφάνιση).
Δύο ποδηλάτες  Α και Β με ίσες μάζες (mΑ = mB = m)  κινούνται πάνω σε μια οριζόντια κυκλική εξέδρα που στρέφεται αριστερόστροφα με γωνιακή ταχύτητα ω γύρω από κατακόρυφο άξονα που διέρχεται από το κέντρο της. Στο σχήμα 1 φαίνονται οι τροχιές που διαγράφουν. είναι ομόκεντροι κύκλοι ακτίνων r1 και r2  (r1 > r2) με κέντρο το κέντρο της εξέδρας. Τα μέτρα των ταχυτήτων των δύο ποδηλατών είναι ίσα (υΑ = υΒ = υ). Αρχικά, η φορά περιστροφής του ποδηλάτη Β είναι ομόρροπη με τη φορά περιστροφής της εξέδρας, ενώ του A αντίρροπη.
Κάποια στιγμή αποφασίζουν να ανταλλάξουν τις τροχιές που διαγράφουν χωρίς να αλλάξουν τη φορά κίνησής τους. Ο ποδηλάτης Α πλησιάζει προς το εσωτερικό της εξέδρας και συνεχίζει, χωρίς να αλλάξει την ταχύτητά του, να κινείται πάνω στο κύκλο ακτίνας r2 που διέγραφε ο Β. Ταυτόχρονα ο Β εξέρχεται και συνεχίζει με την ίδια ταχύτητα να κινείται πάνω στον κύκλο ακτίνας r1 (σχήμα 2).
Να εξετάσετε τι θα συμβεί στην περίοδο περιστροφής της εξέδρας.
Οι τριβές με τον άξονα θεωρούνται αμελητέες. Οι ταχύτητες έχουν μετρηθεί από παρατηρητές ακίνητους ως προς το έδαφος.


Δείτε:

β. Από την “από αριστερά οδήγηση” στην “οδήγηση από δεξιά”. (Η «δύσκολη» εμφάνιση).
Είναι αλήθεια ότι, αν οι Βρετανοί αποφάσιζαν να αλλάξουν μια συνήθειά τους, ο ήλιος θα στεκόταν περισσότερο χρόνο πάνω από κάθε τόπο στη διάρκεια μιας μέρας;

Όπως είναι γνωστό, στη Μ. Βρετανία υπάρχει ο κανονισμός οι οδηγοί να οδηγούν το όχημά τους στην αριστερή πλευρά των δρόμων (οδήγηση από αριστερά). Αν κάποια μέρα αποφάσιζαν να αλλάξουν τη συνήθειά τους και επέβαλλαν την οδήγηση από δεξιά, θα είχε αυτή η αλλαγή κάποια επίπτωση στη διάρκεια της ημέρας; 

Δείτε: