Η φύση αγαπά την αλήθεια, και η αλήθεια της φύσης διεκδικεί το δικαίωμα να εκτίθεται μόνο σε όσους την ποθούν. Φ. Ντοστογιέφσκι

Τρίτη 10 Νοεμβρίου 2020

Ένα επιτραπέζιο παιχνίδι

 


Οι σανίδες Α και Β του σχήματος κινούνται μαζί, η μια ακριβώς πάνω στην άλλη, με κοινή ταχύτητα υ, κατά μήκος μιας λείας οριζόντιας επιφάνειας. Κάποια στιγμή η σανίδα Β συγκρούεται πλαστικά και μετωπικά με μια ακίνητη όμοια σανίδα C. Μετά τη σύγκρουση, οι σανίδες B και C κινούνται μαζί, και η σανίδα Α γλιστρά στην πάνω πλευρά της C και σταματά την κίνησή της σε σχέση με τη C στη θέση που φαίνεται στο σχήμα.

Ποιο είναι το μήκος κάθε σανίδας;

Και οι τρεις σανίδες έχουν την ίδια μάζα m, το ίδιο μήκος L και ίδιο σχήμα. Μεταξύ των Α και Β δεν υπάρχει τριβή, ο συντελεστής τριβής ολισθήσεως μεταξύ των σανίδων A και C είναι μ. Η επιτάχυνση g λόγω βαρύτητας είναι γνωστή.  

Η Λύση σε pdf:

Η Λύση σε word:



Δευτέρα 9 Νοεμβρίου 2020

Ελαστική μετωπική κρούση δύο σφαιρών με αρχική ταχύτητα, όπου τελικά η μια ακινητοποιείται (δύο περιπτώσεις)

 

Δύο λείες σφαίρες Α και Β με μάζες mΑ και mΒ, που κινούνται σε λείο οριζόντιο επίπεδο με ταχύτητες υΑ = 6 m/s και υΒ = 1,5 m/s, αντίστοιχα, συγκρούονται μετωπικά και ελαστικά.

Α. Να βρείτε το λόγο mΑ/mΒ των μαζών των  δύο σφαιρών ώστε η σφαίρα Α μετά τη σύγκρουση να ακινητοποιηθεί αν οι ταχύτητες των δύο σφαιρών:


 α. έχουν την ίδια κατεύθυνση (ομόρροπες)

 

β. έχουν αντίθετη κατεύθυνση (αντίρροπες)


Β. Να υπολογίσετε την ταχύτητα της σφαίρας Β και στις δύο περιπτώσεις.

Απάντηση: 

Α. α. 0,5,  β. 1,5.    Β. 4,5 m/s,  7,5 m/s

Η Λύση σε pdf:

H Λύση σε Word:

Παρασκευή 11 Σεπτεμβρίου 2020

         ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2020 ΣΤΗ ΦΥΣΙΚΗ


                            Students in virus epicentre to sit national high school exam early next  month

                                                        Φυσική (Νέο σύστημα)

                                                           Φυσική (Παλαιό σύστημα)  

                                                           Φυσική Ομογενών (Νέο σύστημα)

                                                Φυσική Ομογενών (Παλαιό σύστημα)

                                       Οι λύσεις των θεμάτων στο νέο σύστημα 

                            Οι λύσεις των θεμάτων στο παλαιό σύστημα

                            Οι λύσεις των θεμάτων για τους ομογενείς 

                          Τα σχόλια των συναδέλφων στο Υλικονετ

Δευτέρα 22 Ιουνίου 2020

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ 2020


Για τα θέματα Φυσικής Ημερησίων και Εσπερινών πατήστε εδώ.

Για τα θέματα ΦΥΣΙΚΗΣ (Ημερήσια) περσινή ύλη, πατήστε εδώ.

Για τα θέματα ΦΥΣΙΚΗΣ (Εσπερινά) περσινή ύλη, πατήστε εδώ.

Σύντομες και αναλυτικές απαντήσεις:

Κυριακή 14 Ιουνίου 2020

Δύο σανίδες κι ένα σχοινί (ένα εύκολο-δύσκολο θέμα)

[Σε ένα σύστημα σωμάτων σε ισορροπία η συνθήκη ΣFεξ = 0 και Στεξ = 0 πρέπει να προηγείται οποιασδήποτε άλλης].
Δύο όμοιες, ορθογώνιες, ομογενείς σανίδες, η καθεμιά μάζας m και μήκους L, συνδέονται με έναν μεντεσέ Ο στα άνω άκρα τους. Η καθεμιά σχηματίζει γωνία θ με την κατακόρυφο. Ένα σχοινί αμελητέας μάζας συνδέει το κάτω άκρο της δεξιάς σανίδας με την αριστερή σανίδα και είναι κάθετο σε αυτήν, όπως φαίνεται στο σχήμα. Ολόκληρη η διάταξη  βρίσκεται σε ένα οριζόντιο δάπεδο χωρίς τριβές.
α) Να βρείτε τη δύναμη που ασκεί το δάπεδο στήριξης σε κάθε σανίδα.
β) Πόση είναι η τάση στο νήμα;
γ) Ποια δύναμη ασκεί κάθε σανίδα στην άλλη στο πάνω άκρο της μέσω του μεντεσέ;  
H επιτάχυνση της βαρύτητας g θεωρείται γνωστή. 
[Πηγή: David Morin Introduction to classical mechanics]
                  Απάντηση σε Word: 
                  Απάντηση σε pdf:

Κυριακή 3 Μαΐου 2020

Ένα συνδυαστικό τέταρτο θέμα

Το ορθογώνιο πλαίσιο Π του σχήματος είναι τοποθετημένο παράλληλα προς τις δυναμικές γραμμές ομογενούς μαγνητικού πεδίου έντασης 0,2 Τ, ανάμεσα σε δύο ισχυρούς μαγνήτες. Αποτελείται από n = 60 σπείρες συνολικής ωμικής αντίστασης R = 0,5 Ω και με διαστάσεις α = 6 cm μήκος και β = 4 cm πλάτος. Οι ακροδέκτες του, συνδέονται με ηλεκτρική πηγή τάσης 10 V και διαρρέεται από ρεύμα έντασης i.
Το πλαίσιο μπορεί να περιστρέφεται γύρω από ακλόνητο άξονα από μονωτικό υλικό στον οποίο είναι στερεωμένη μια τροχαλία ακτίνας r = √3 cm. Γύρω από αυτήν είναι τυλιγμένο ένα αβαρές νήμα, που είναι δεμένο στο ένα άκρο οριζόντιας ομογενούς ράβδου Ρ μάζας m και μήκους L = 9 cm. Η ράβδος Ρ είναι αρθρωμένη στο αριστερό της άκρο Α και στη θέση Β με δύο παράλληλες, αμελητέας μάζας, ράβδους μήκους ℓ = 0,1 m, οι οποίες, στην κατάσταση ισορροπίας που περιγράφεται στο σχήμα, έχουν εκτραπεί κατά 60ο από την κατακόρυφο.
Α. Δεδομένου ότι το σύστημα πλαίσιο – ράβδος ισορροπεί:
α. Να χαρακτηρίσετε τους πόλους των δύο μαγνητών.
β. Να βρείτε τη ροπή των δυνάμεων πάνω στο πλαίσιο.
γ. Να υπολογίσετε τη μάζα m της ράβδου Ρ.
Β. Κάποια στιγμή κόβουμε το νήμα.
α. Να βρείτε τη μέγιστη γωνιακή ταχύτητα των παράλληλων ράβδων και της ράβδου Ρ. Τριβές αμελητέες.
β. Δείξτε ότι ο λόγος F1/F2 των μέτρων των δυνάμεων που ασκούν οι παράλληλοι ράβδοι στη ράβδο Ρ, είναι ανεξάρτητος από τη θέση της και υπολογίστε τον.
Γ. Στην έναρξη της κίνησης της ράβδου Ρ να βρείτε:
α. Τα μέτρα των δυνάμεων F1 και F2.
β. Τη γωνιακή επιτάχυνση των παράλληλων ράβδων.
     Δίνεται g = 10 m/s2

Η απάντηση σε pdf  
Η απάντηση σε word

Παρασκευή 1 Μαΐου 2020

Ζεύγος δυνάμεων σε τριγωνικό πλαίσιο και μεταβολή τάσης


Ένα αγώγιμο ομογενές και ισοπαχές πλαίσιο σε σχήμα ισόπλευρου τριγώνου πλευράς α = 0,02 m αναρτάται από ακλόνητο στήριγμα με τη βοήθεια ενός αβαρούς σχοινιού, έτσι ώστε να κρέμεται σε κατακόρυφο επίπεδο μεταξύ των πόλων ενός ισχυρού πεταλοειδούς μαγνήτη, που παράγει ένα οριζόντιο ομογενές μαγνητικό πεδίο 0,1 Τ με διεύθυνση παράλληλη προς το επίπεδο του πλαισίου. Τα άκρα της βάσης του τριγώνου συνδέονται με ηλεκτρική πηγή και διακόπτη. Κάποια στιγμή κλείνουμε τον διακόπτη και το πλαίσιο τροφοδοτείται με ρεύμα έντασης i = 3 A, όπως στο σχήμα.
α) Να δείξετε ότι στην αρχική αυτή θέση το πλαίσιο δέχεται ζεύγος δυνάμεων.
β) Να υπολογίσετε τη ροπή του παραπάνω ζεύγους.
γ) Εξαιτίας της ροπής των δυνάμεων που ενεργούν πάνω του, το τρίγωνο αρχίζει να περιστρέφεται, Πόσο μεταβάλλεται η τάση του σχοινιού στη διάρκεια που το πλαίσιο περιστρέφεται από την αρχική του θέση ως τη θέση όπου γίνεται κάθετο στις δυναμικές γραμμές του μαγνητικού πεδίου;
(Τα σύρματα σύνδεσης του πλαίσιου με την πηγή είναι αρκετά χαλαρά και αμελητέου βάρους ώστε να μην ασκούν δυνάμεις πάνω στο πλαίσιο). 

Απάντηση σε pdf

Απάντηση σε word:

Τρίτη 28 Απριλίου 2020

Ισορροπία και θεώρημα Torricelli


    
Μια ομογενής σφαίρα ακτίνας R περιέχει νερό μέχρις ύψους R/2 πάνω από την οριζόντια διάμετρό της, σε μια θέση της οποίας υπάρχει ένα κλειστό βρυσάκι. Η συνολική μάζα σφαίρας – νερού είναι Μ = 10 kg. Η σφαίρα υποστηρίζεται από δύο αμελητέου βάρους κατακορύφους ράβδους μήκους L = 4R που στερεώνονται στο δάπεδο με αρθρώσεις, όπως φαίνεται στην παρακάτω εικόνα. Οι δύο ράβδοι βρίσκονται σε απόσταση d = R3 και συνδέονται με σχοινί σε ύψος h = d. Δεν υπάρχει τριβή μεταξύ της σφαίρας και των ράβδων και το σύστημα ισορροπεί.
α. Σχεδιάστε τις δυνάμεις που ενεργούν πάνω στη σφαίρα και βρείτε το μέγεθος της δύναμης που κάθε ράβδος ασκεί στη σφαίρα.
β. Σχεδιάστε τις δυνάμεις που ενεργούν στη μια από τις δύο ράβδους και υπολογίστε την τάση Τ του σχοινιού.
γ. Να βρείτε την οριζόντια και την κατακόρυφη δύναμη που δέχεται κάθε ράβδος από την άρθρωσή της στη βάση.
 δ. Αφαιρούμε το κάλυμμα από το πάνω μέρος της σφαίρας και ανοίγουμε το βρυσάκι, οπότε το νερό εκτινάσσεται με μορφή πίδακος. Σε απόσταση s = 1,5R πάνω στο έδαφος υπάρχει ένα μικρό δοχείο. Κάποια στιγμή το νερό του πίδακα αρχίζει να εισχωρεί μέσα στο δοχείο. Να βρείτε τότε το ύψος της στάθμης του νερού μέσα στη σφαίρα.
Δίνεται : g = 10 m/s2, συν30ο = 0,87 

Απάντηση σε pdf: 
Απάντηση σε word


Κυριακή 26 Απριλίου 2020

Δύο δίσκοι χόκεϊ επί πάγου


Δύο δίσκοι χόκεϋ επί πάγου ακτίνων R και μάζας m κινούνται ο ένας προς τον άλλο σε μια οριζόντια επιφάνεια, χωρίς τριβή, με ίσες και αντίθετες ταχύτητες σε μια πορεία μετωπικής σύγκρουσης. Και οι δύο περιστρέφονται αριστερόστροφα γύρω από το αντίστοιχο κέντρο μάζας τους με γωνιακή ταχύτητα ω, όπως φαίνεται στην παρακάτω εικόνα.
α. Υπολογίστε τη συνολική ορμή και στροφορμή του συστήματος των δύο δίσκων πριν την κρούση.
β. Είναι η συνολική στροφορμή του συστήματος των δίσκων μετά την κρούση ίδια με αυτήν πριν την κρούση;
γ. Αν η κρούση είναι πλαστική και οι δύο δίσκοι συγκολλώνται σε ένα διπλό δίσκο, ποια είναι η ροπή αδράνειας του διπλού δίσκου ως προς το κέντρο μάζας του; (Δίνεται η ροπή αδράνειας κάθε δίσκου ως προς το δικό του κέντρο μάζας του ίση με ½ mR2).
δ. Θα περιστρέφεται ο διπλός δίσκος γύρω από το κέντρο μάζας του; Αν ναι να υπολογίσετε το τη γωνιακή του ταχύτητα, αν όχι να εξηγείστε γιατί. 

Απάντηση σε pdf:  
 Απάντηση σε word:


Σάββατο 25 Απριλίου 2020

Μετρώντας την πυκνότητα ενός υγρού με ανεστραμμένο σωλήνα σχήματος U


Τα ανοικτά σκέλη ενός σωλήνα σχήματος U είναι γυρισμένα προς τα κάτω και βυθισμένα σε δύο δοχεία Α και Β. Το Α περιέχει νερό και το Β κάποιο άγνωστο υγρό. Η πυκνότητα του νερού είναι 1g /cm3. Αντλούμε μια ποσότητα αέρα από το άνοιγμα Γ και κατόπιν το κλείνουμε με τη βοήθεια της βαλβίδας β. Ως αποτέλεσμα αυτού, στον σωλήνα Α εισχωρεί νερό σε ύψος 10 cm πάνω από την ελεύθερη στάθμη του και στον σωλήνα Β υγρό σε ύψος 12 cm πάνω από την ελεύθερη στάθμη του.
Να εξετάσετε την ορθότητα των παρακάτω προτάσεων:
α. Η πυκνότητα του υγρού στο δοχείο Β είναι 0,83 g / cm3.
β. Εάν επαναλάβουμε το πείραμα με τη στάθμη του υγρού στο ένα δοχείο σε διαφορετικό ύψος από το ύψος της στάθμης του άλλου και αφαιρέσουμε ποσότητα αέρα, ο λόγος των υψών των υγρών στα δύο σκέλη του σωλήνα θα παραμείνει 5:6.
γ. Το υγρό στο δοχείο Β έχει πυκνότητα 1,2 g / cm3

Απάντηση σε pdf: 

Απάντηση σε word:

Τετάρτη 22 Απριλίου 2020

Μεγάλος κύλινδρος υπερπηδά μικρό κύλινδρο

[Μια παραλλαγή της ασκ. 4.57 του σχολικού]

Δύο ομογενείς κύλινδροι διαμέτρων R και r, αντίστοιχα, ηρεμούν σε οριζόντιο επίπεδο όπως φαίνεται στο σχήμα. Η διάμετρος του μεγαλύτερου κυλίνδρου είναι τέσσερις φορές μεγαλύτερη από του μικρότερου. Γύρω από τη μέση του μεγαλύτερου κυλίνδρου τυλίγεται ένα λεπτό σχοινί, το ελεύθερο άκρο του οποίου τραβιέται με σταθερή οριζόντια δύναμη F. Υποθέτοντας ότι ο συντελεστής οριακής τριβής μ είναι ίσος με τον συντελεστή τριβής ολισθήσεως και ίδιος για όλες τις επιφάνειες επαφής, να βρείτε:
α) Την ελάχιστη τιμή του ώστε ο μεγαλύτερος κύλινδρος να αναρριχηθεί κυλιόμενος, χωρίς ολίσθηση, πάνω στον μικρότερο και να τον προσπεράσει χωρίς ο μικρότερος να μετατοπιστεί ή να περιστραφεί.
Θεωρείστε ότι η δύναμη F είναι επαρκής ώστε να ανεβάσει τον μεγάλο κύλινδρο πάνω στον μικρό.
β) Το ελάχιστο μέτρο της F ώστε ο μεγάλος κύλινδρος να αναρριχηθεί στον μικρότερο.
Δίνεται το βάρος του μεγάλου κυλίνδρου W = 10 Ν .

Τρίτη 21 Απριλίου 2020

Αγώγιμος τριγωνικός αγωγός σε ΟΜΠ


Κατασκευάζουμε ένα ισόπλευρο τρίγωνο ΑΒΓ, πλευράς α, από ένα ομογενές σταθερής κυλινδρικής διατομής αγώγιμο σύρμα. Στη συνέχεια συνδέουμε τις κορυφές του Α και Β με τους πόλους ηλεκτρικής πηγής. Με τη βοήθεια ενός αμπερομέτρου διαπιστώνουμε ότι η πλευρά ΑΒ διαρρέεται από ρεύμα i, όπως φαίνεται στο σχήμα. Τοποθετούμε το τρίγωνο σε ένα ομογενές μαγνητικό πεδίο Β κάθετο στο επίπεδό του.
Το μέτρο της μαγνητικής δύναμης στο τρίγωνο είναι:
                              α. 2Βiα,             β. (3/2)Βiα,            γ. μηδέν
Να επιλέξτε με αιτιολόγηση το σωστό. 

Απάντηση σε pdf: 

Απάντηση σε word:

Σάββατο 18 Απριλίου 2020

Ισορροπία συστήματος σωμάτων σε μαγνητικό πεδίο

Σε ένα μη αγώγιμο ομογενή δακτύλιο, ακτίνας r, στερεώνεται κατά μήκος μιας διαμέτρου του μια αβαρής αγώγιμη ομογενής ράβδος ΑΒ μήκους 2r και αντίστασης 2R. Το σύστημα των δύο σωμάτων μπορεί να περιστρέφεται χωρίς τριβές γύρω από σταθερό οριζόντιο άξονα κάθετο στο κέντρο του Ο. Στα άκρα ενός αβαρούς, μη εκτατού, νήματος  που είναι τυλιγμένο στην περιφέρεια του δακτυλίου αναρτώνται δύο σώματα με μάζες m και 2m, αντίστοιχα.. Το σύστημα τοποθετείται σε ένα ομογενές μαγνητικό πεδίο Β κυκλικής διατομής ακτίνας r/2, κάθετο στο επίπεδο του δακτυλίου, όπως φαίνεται στο σχήμα. Δημιουργούμε ένα κύκλωμα με τρία καλώδια που τα συνδέουμε στα άκρα Α και Β και στο κέντρο Ο της ράβδου. Στο κεντρικό καλώδιο παρεμβάλουμε ηλεκτρική πηγή αμελητέας αντίστασης και αφήνουμε το σύστημα δακτυλίου - ράβδου - σωμάτων ελεύθερο να κινηθεί. Παρατηρούμε ότι το σύστημα παραμένει ακίνητο (τα καλώδια σύνδεσης της ράβδου με την πηγή είναι λεπτά και χαλαρά και δεν ασκούν δυνάμεις στο σύστημα). Η τάση V στους πόλους  της πηγής είναι: 
α. 3mgR
  Br
β. mgR
2Br
γ. 4mgR
 Br

Επιλέξτε το σωστό και αιτιολογείστε την επιλογή σας. 
Απάντηση σε pdf:  
Απάντηση σε word:

Δευτέρα 13 Απριλίου 2020

Νερό σε δεξαμενή μαζί με αέρα υπό πίεση


Το σχήμα δείχνει μια μεγάλη κλειστή κυλινδρική δεξαμενή που περιέχει νερό. Αρχικά, ο αέρας που παγιδεύεται πάνω από την επιφάνεια του νερού έχει ύψος ho και πίεση 2po, όπου po είναι η ατμοσφαιρική πίεση. Ένας μακρύς κατακόρυφος σωλήνας περιέχει νερό σε ύψος h2 πάνω από το επίπεδο καπάκι της δεξαμενής, που επικοινωνεί με το νερό της δεξαμενής.
α. Να βρείτε το ύψος h2 του νερού στον κατακόρυφο σωλήνα  
β. Ανοίγουμε μια τρύπα στα τοιχώματα της δεξαμενής σε βάθος h1 κάτω από το καπάκι. Να βρείτε την αρχική ταχύτητα με την οποία εξέρχεται το νερό από την τρύπα.
γ. Σε ποιο ύψος θα σταθεροποιηθεί η στάθμη του νερού στον κατακόρυφο σωλήνα, όταν σταματήσει η ροή του από την τρύπα;
 (Τα μεγέθη Ρο , ho­, h1, η πυκνότητα ρ του νερού και η επιτάχυνση βαρύτητας g θεωρούνται γνωστά).

Απάντηση σε pdf: 

Απάντηση σε word


Σάββατο 11 Απριλίου 2020

Οριζόντια ράβδος στερεωμένη σε δύο ανόμοια ελατήρια


Μια ομοιόμορφη (ομογενής και ισοπαχής) ράβδος AB βάρους w και μήκους L = 20 cm αναρτάται από δύο κατακόρυφα ελατήρια Χ και Υ προσαρτημένα στα άκρα της Α και Β. Τα άνω άκρα των ελατηρίων είναι στερεωμένα σε οριζόντιο ακλόνητο στήριγμα. Όταν τα ελατήρια δεν είναι εκτεταμένα έχουν το ίδιο μήκος. Η σταθερά του ελατηρίου Χ είναι ίση με 3k και του Υ ίση με k.
α. Σε ποια απόσταση από το Α πρέπει να τοποθετήσουμε πάνω στη ράβδο ένα σώμα Σ βάρους 5W ώστε η ράβδος να ισορροπεί οριζόντια;
β. Αντικαθιστούμε το ελατήριο Χ με ένα άλλο παρόμοιο με το ελατήριο Υ και τοποθετούμε το σώμα Σ στο μέσον της ράβδου. Μετατοπίζουμε προς τα κάτω τη ράβδο, παράλληλα προς τη θέση ισορροπίας της, με το σώμα στην παραπάνω θέση, και αφήνουμε ελεύθερο το σύστημα ράβδος – σώμα Σ να εκτελέσει ταλάντωση. Αν w = 2 Ν και k = 150 N/m, να βρείτε το μέγιστο επιτρεπτό πλάτος της ταλάντωσης ώστε να μη χαθεί η επαφή του σώματος Σ με τη ράβδο.
γ. Να προσδιορίσετε στη θέση όπου χάνεται η επαφή της ράβδου με το σώμα τη συνολική ροπή των δυνάμεων που ενεργούν πάνω στη ράβδο, ως προς το άκρο της Α.

Τετάρτη 8 Απριλίου 2020

Δακτύλιος και δύο τροχοί εκτελούν στροφική κίνηση διατηρώντας «στενές επαφές τρίτου τύπου»


[Μια απλή άσκηση συνδυασμού στροφικής κίνησης τριών σωμάτων].

Το σύστημα σωμάτων του σχήματος αποτελείται από δύο όμοιους ομογενείς κατακόρυφους τροχούς Α, Β και έναν ομογενή δακτύλιο Δ. Οι τροχοί Α και Β ακτίνας r = 4 cm μπορούν να περιστρέφονται γύρω από ακλόνητους οριζόντιους άξονες κάθετους στο κέντρο τους. Ο δακτύλιος Δ, με εσωτερική ακτίνα Rεσ = 11 cm και εξωτερική ακτίνα Rεξ = 12 cm, είναι τοποθετημένος ανάμεσα στους δύο τροχούς. Γνωρίζοντας ότι ο τροχός Α περιστρέφεται κατά τη φορά των δεικτών του ρολογιού, με τη βοήθεια ενός κινητήρα κατάλληλα προσαρμοσμένου στον άξονά του, με σταθερή συχνότητα fA = 3 c/s και ότι δεν λαμβάνει χώρα ολίσθηση να βρείτε:
α. Τη γωνιακή ταχύτητα του τροχού Β.
β. Την επιτάχυνση των σημείων των τροχών Α και Β τα οποία είναι σε επαφή με τον δακτύλιο.
γ. Tη στροφορμή του δίσκου ως προς το κέντρο του και την κινητική του ενέργεια αν ΙΔ = 0,004 kg·m2.
Θεωρείστε ότι π2 10.



Δευτέρα 6 Απριλίου 2020

Ελεύθερη κίνηση οριζόντιου δίσκου σε λείο οριζόντιο επίπεδο


Κάποια στιγμή t1 δύο σημεία Α και Β ενός ελεύθερα σε λείο οριζόντιο επίπεδο κινούμενου λεπτού ομογενούς δίσκου μάζας m = 1 kg και ακτίνας R = 0,4 m, έχουν ταχύτητες υ1 και υ2, αντίστοιχα. Όπως φαίνεται στο σχήμα, οι διευθύνσεις τους σχηματίζουν γωνία 30ο και 60ο, αντίστοιχα,  με το ευθύγραμμο τμήμα AB που τα συνδέει. Η ταχύτητα υcm του κέντρου μάζας του δίσκου έχει διεύθυνση κάθετη στο ΑΒ.
Α. Η κίνηση του δίσκου μπορεί να είναι:
α. μεταφορική,   
β. στροφική γύρω από το κέντρο μάζας του, 
γ. μεταφορική και στροφική γύρω από άξονα κάθετο στο κέντρο του.                                     Να δικαιολογήσετε την απάντησή σας.
Β. Αν ΑΒ = CA = CB = d = 0,3 m και υ1 = 0,6 m/s, να υπολογίσετε :
2α. Την ταχύτητα του κέντρου μάζας και τη γωνιακή ταχύτητα του δίσκου.
2β. Την ταχύτητα υ2 του σημείου Β τη στιγμή t1.
Γ. Την κινητική ενέργεια του δίσκου.
Δίνεται η ροπή αδράνειας του δίσκου ως προς άξονα κάθετο στο κέντρο του:

Ιcm =   ½  mR2