Η φύση αγαπά την αλήθεια, και η αλήθεια της φύσης διεκδικεί το δικαίωμα να εκτίθεται μόνο σε όσους την ποθούν. Φ. Ντοστογιέφσκι

Εμφάνιση αναρτήσεων με ετικέτα 3.8 ΕΝΕΡΓΕΙΑ ΣΤΗΝ ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ. Εμφάνιση όλων των αναρτήσεων
Εμφάνιση αναρτήσεων με ετικέτα 3.8 ΕΝΕΡΓΕΙΑ ΣΤΗΝ ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ. Εμφάνιση όλων των αναρτήσεων

Δευτέρα 6 Απριλίου 2020

Ελεύθερη κίνηση οριζόντιου δίσκου σε λείο οριζόντιο επίπεδο


Κάποια στιγμή t1 δύο σημεία Α και Β ενός ελεύθερα σε λείο οριζόντιο επίπεδο κινούμενου λεπτού ομογενούς δίσκου μάζας m = 1 kg και ακτίνας R = 0,4 m, έχουν ταχύτητες υ1 και υ2, αντίστοιχα. Όπως φαίνεται στο σχήμα, οι διευθύνσεις τους σχηματίζουν γωνία 30ο και 60ο, αντίστοιχα,  με το ευθύγραμμο τμήμα AB που τα συνδέει. Η ταχύτητα υcm του κέντρου μάζας του δίσκου έχει διεύθυνση κάθετη στο ΑΒ.
Α. Η κίνηση του δίσκου μπορεί να είναι:
α. μεταφορική,   
β. στροφική γύρω από το κέντρο μάζας του, 
γ. μεταφορική και στροφική γύρω από άξονα κάθετο στο κέντρο του.                                     Να δικαιολογήσετε την απάντησή σας.
Β. Αν ΑΒ = CA = CB = d = 0,3 m και υ1 = 0,6 m/s, να υπολογίσετε :
2α. Την ταχύτητα του κέντρου μάζας και τη γωνιακή ταχύτητα του δίσκου.
2β. Την ταχύτητα υ2 του σημείου Β τη στιγμή t1.
Γ. Την κινητική ενέργεια του δίσκου.
Δίνεται η ροπή αδράνειας του δίσκου ως προς άξονα κάθετο στο κέντρο του:

Ιcm =   ½  mR2

Τρίτη 31 Μαρτίου 2020

Tο έργο δύναμης σε σύστημα σωμάτων και οι κινητικές ενέργειες


Ένας συμπαγής ομογενής δίσκος μάζας Μ και ακτίνας R είναι τοποθετημένος πάνω σε μια οριζόντια ορθογώνια πλατφόρμα ίσης μάζας Μ και μεγάλου μήκους, που μπορεί να ολισθαίνει πάνω σε λεία οριζόντια επιφάνεια. Ο δίσκος δέχεται σταθερή οριζόντια δύναμη F = 40 Ν και κυλίεται χωρίς να ολισθαίνει πάνω στην πλατφόρμα. Να βρείτε:
α. Πόσο αυξάνεται η κινητική ενέργεια της πλατφόρμας όταν αυτή μετατοπίζεται κατά D = 1 m.
β. Την αντίστοιχη αύξηση της κινητικής ενέργειας του δίσκου λόγω μεταφορικής κίνησης.
γ. Την αύξηση της κινητικής ενέργειας του δίσκου λόγω στροφικής κίνησης.
Δίνεται για τον δίσκο Ιc = (1/2)ΜR2 .

Απάντηση σε pdf: 
Απάντηση σε word:

Κυριακή 8 Μαρτίου 2020

Περιστροφή δίσκου γύρω από οριζόντια χορδή του


Ένας ομογενής κυκλικός δίσκος έχει ακτίνα R και μάζα m. Ένα σωματίδιο, επίσης μάζας m, είναι στερεωμένο στο σημείο Σ στην άκρη του δίσκου όπως φαίνεται στο σχήμα. Ο δίσκος μπορεί να περιστρέφεται χωρίς τριβές γύρω από τον σταθερό οριζόντιο άξονα ΡΡ΄, πάνω στον οποίο βρίσκεται η χορδή ΑΒ που απέχει R / 4 από το κέντρο Κ του δίσκου και είναι κάθετη στην προέκταση της ακτίνας ΣΚ. Αρχικά, ο δίσκος κρατείται κατακόρυφα με το σωματίδιο στο σημείο Σ στην υψηλότερη θέση του. Στη συνέχεια αφήνεται να πέσει, έτσι ώστε να αρχίσει να περιστρέφεται γύρω από τοnν άξονα PΡ΄. 
Βρείτε τη γραμμική ταχύτητα του σωματιδίου καθώς φθάνει στη χαμηλότερη θέση του.
Δίνεται ότι η ροπή αδράνειας ομογενούς κυκλικού δίσκου ως προς άξονα που βρίσκεται στο επίπεδό του και διέρχεται από το κέντρο του είναι I = mR2/4. 
Απάντηση σε pdf 
Απάντηση σε word:


Σάββατο 29 Φεβρουαρίου 2020

Κατακόρυφη περιστροφή ράβδου στο εσωτερικό κοίλου κυλίνδρου

[Εδώ, μια ράβδος στρέφεται γύρω από άξονα που δεν διέρχεται από το φορέα της]

Θεωρείστε ένα κοίλο κύλινδρο σταθερό σε οριζόντιο επίπεδο, με λεία εσωτερική επιφάνεια ακτίνας     R = 5 m και μια ομογενή ράβδο μάζας M και μήκους L = 8 m, που συγκρατείται αρχικά σε κατακόρυφη θέση όπως φαίνεται στο σχήμα. Κάποια στιγμή η ράβδος αφήνεται από τη θέση αυτή   και αρχίζει να γλιστράει μέσα στον κύλινδρο με τα άκρα της διαρκώς σε επαφή με τα εσωτερικά τοιχώματά του.
Θεωρείστε ότι κατά την πτώση της η ράβδος βρίσκεται διαρκώς στο ίδιο κατακόρυφο επίπεδο και    ότι η κίνησή της είναι καθαρά στροφική γύρω από τον άξονα του κυλίνδρου που διέρχεται από το O.
Υπολογίσετε τη γωνιακή ταχύτητα της ράβδου τη στιγμή που γίνεται οριζόντια.
Δίνεται για  τη ράβδο η ροπή αδράνειας Ιc.m = (1/12)ML2.
Θεωρείστε, για ευκολία, ότι g = 86/9 m/s2.
Απ.  2r/s
Λύση σε pdf:  

Λύση σε word:

Τετάρτη 26 Φεβρουαρίου 2020

Τροχαλία και κουβάς

[Εφαρμογή της Α.Δ.Ε όταν ο κουβάς αφήνεται ελεύθερος να κατέβει.]

Χρησιμοποιήστε την αρχή διατήρησης της ενέργειας  για να υπολογίσετε τη γωνιακή ταχύτητα της τροχαλίας που φαίνεται στο σχήμα, τη στιγμή που ο κάδος μάζας m = 3 kg έχει κατέλθει κατά h = 3 m, ξεκινώντας από την ηρεμία. Θεωρείστε αμελητέα τη μάζα του σχοινιού που είναι προσαρτημένο στον κάδο και τυλιγμένο πολλές φορές γύρω από την τροχαλία και ότι δεν γλιστρά καθώς ξετυλίγεται.
Η τροχαλία περιστρέφεται χωρίς τριβές.
Δίνεται η μάζα Μ = 4 kg, η ακτίνα R = 0,6 m και η ροπή αδράνειας I = MR2/2 της  τροχαλίας καθώς και ότι η επιτάχυνση βαρύτητας ισούται με g = 10 m/s2



Σάββατο 2 Ιουνίου 2018

Δύο Θέματα Β στο στερεό


1. Κύβος και όρθιος κύλινδρος σε ένα αγώνα δρόμου


Πάνω σε μια λεία οριζόντια επιφάνεια, τοποθετούμε δύο στερεά, ένα κύλινδρο και ένα κύβο με ίσες μάζες. Τα δύο στερεά τοποθετούνται, όπως φαίνεται στο πλαϊνό σχήμα, μπροστά από τη γραμμή ε1. Στο κέντρο του κύβου δένουμε ένα αβαρές σχοινί, ενώ ένα άλλο το τυλίγουμε σφικτά γύρω από τον κύλινδρο, έτσι ώστε να μην γλιστρά στην περιφέρειά του. Ασκούμε στα ελευθέρα άκρα των δύο σχοινιών δύο ίσες οριζόντιες δυνάμεις, με διεύθυνση κάθετη στην γραμμή ε1.

Δευτέρα 28 Μαΐου 2018

Μια απλή άσκηση με τον σφόνδυλο της πρόσφατης κατασκευής G2 της NASA.

Η πρόσφατη κατασκευή G2 της NASA περιλαμβάνει ένα σφόνδυλο, που χρησιμοποιείται ως συσσωρευτής κινητικής ενέργειας και έχει τα εξής χαρακτηριστικά:
Σχήμα: συμπαγής κύλινδρος με στρώσεις ανθρακονημάτων και τιτανίου.
Διάμετρος: 30cm
Ύψος: 76 cm,
Μέση πυκνότητα υλικού: 400 kg/m3 (ανθρακονήματα -τιτάνιο)
Μέγιστη ενέργεια: 525 Wh,
Μέγιστη ισχύς: 1 kW,
Θεωρώντας τις απώλειες λόγω τριβών αμελητέες, να απαντήσετε στις παρακάτω ερωτήσεις:

Αξιοποιώντας την στροφορμή και την κινητική ενέργεια λόγω περιστροφής


Ο σφόνδυλος είναι μια μάζα, περιστρεφόμενη γύρω από ακλόνητο άξονα, η οποία μπορεί να αποθηκεύσει ενέργεια με μηχανικό τρόπο, υπό τη μορφή κινητικής ενέργειας λόγω περιστροφής. 
Σήμερα, συνδυάζεται με μια ηλεκτρική συσκευή, που μπορεί να λειτουργεί άλλοτε ως κινητήρας και άλλοτε ως γεννήτρια. Όταν η ηλεκτρική συσκευή λειτουργεί ως κινητήρας, θέτει σε περιστροφή τον σφόνδυλο και όσο πιο γρήγορα περιστρέφεται αυτός, τόσο περισσότερη ενέργεια αποθηκεύει. Ο σφόνδυλος, δηλαδή, λειτουργεί ως μια μηχανική μπαταρία.

Παρασκευή 25 Μαΐου 2018

Συνδυαστική Μηχανικής Στερεού – Κρούσης - Ανακύκλωσης


Το σύστημα “ράβδος – σφαιρίδιο Σ1” του σχήματος, μπορεί να περιστρέφεται, χωρίς τριβές, γύρω από ακλόνητο οριζόντιο άξονα, κάθετο στο άκρο Ο της ράβδου. Η μάζα του Σ1 είναι ίση με τα 2/3 της μάζας Μ της ράβδου, ενώ του Σ2 είναι τετραπλάσια της μάζας της ράβδου.
Αφήνουμε ελεύθερο το σύστημα από την οριζόντια θέση. Όταν φτάσει στην κατακόρυφη θέση συγκρούεται με το σφαιρίδιο Σ2 και ακινητοποιείται, ενώ το Σ2, δεμένο στην άκρη ενός σχοινιού μήκους L/2,, αρχίζει να εκτελεί κυκλική κίνηση σε κατακόρυφο επίπεδο, με κέντρο το ακλόνητο άλλο άκρο του σχοινιού.

Τρίτη 8 Μαΐου 2018

Αβαρής ράβδος και δύο σφαιρίδια σε σύνθετη κίνηση


Η κινητική ενέργεια του συστήματος «αβαρής ράβδος – σφαιρίδια», που κινείται με ταχύτητα 5 m/s και εκτελεί 1 περιστροφή το δευτερόλεπτο γύρω από το κέντρο μάζας του, είναι:
   α. 650 J,     
   β. 316,67 J,    
   γ.  350 J
Επιλέξτε το σωστό και αιτιολογείστε.

Τρεις κύλινδροι


Τρεις παρόμοιοι συμπαγείς και ομογενείς κύλινδροι και ένα αβαρές σχοινί αποτελούν το σύστημα του σχήματος. Όταν κύλινδρος 3 κατεβαίνει, ο 1 κυλίεται χωρίς ολίσθηση πάνω στην οριζόντια επιφάνεια ενός τραπεζιού και το σχοινί, χωρίς να ολισθαίνει, θέτει σε περιστροφή τον κύλινδρο 2. 

Ράβδος με διαφορετικές ταχύτητες στα άκρα της


Στο σχήμα φαίνονται, κάποια χρονική στιγμή t1, οι ταχύτητες των άκρων μιας ομογενούς ράβδου η οποία κινείται πάνω σε λείο οριζόντιο επίπεδο. Το μήκος της ράβδου είναι 1 m και η μάζα της 3 kg.
Να βρείτε:
α. Την κινητική ενέργεια της ράβδου

Δευτέρα 7 Μαΐου 2018

Κίνηση σφαίρας σε ημισφαίριο


Μια σφαίρα, μάζας m = 1 kg και ακτίνας r = 0,1 m συγκρατείται αρχικά στη θέση που φαίνεται στο σχήμα. Κάποια στιγμή αφήνεται ελεύθερη (χωρίς να την σπρώξουμε).
α. Η σφαίρα κυλίεται στο κοίλο ημισφαιρικό δοχείο, ακτίνας R = 1,1 m, του σχήματος χωρίς να ολισθαίνει. Με πόση ταχύτητα διέρχεται από το χαμηλότερο σημείο Β του δοχείου;
β. Αν στη συνέχεια (μετά το σημείο Β) η εσωτερική επιφάνεια του δοχείου είναι λεία, να εξετάσετε, χωρίς υπολογισμούς:

Σάββατο 21 Απριλίου 2018

Ένα παιδικό παιχνίδι με μάλλον απρόσμενη συμπεριφορά. ( Η άσκηση)


 Ένα παιδικό παιχνίδι αποτελείται από την τραπεζοειδή σφήνα του σχήματος, η οποία περιστρέφεται γύρω από τον σταθερό κατακόρυφο άξονα zz΄.
Το κυλινδρικό σώμα Σ, μάζας m = 0,18 kg, φέρει οπή κατά μήκος  του άξονά του και μπορεί να ολισθαίνει χωρίς τριβές πάνω στη λεπτή ράβδο ΑΒ.
Όταν η σφήνα περιστρέφεται με σταθερή γωνιακή ταχύτητα ω, το σώμα ισορροπεί σε απόσταση ℓ = 3/8 m από το Β.

Δευτέρα 20 Απριλίου 2015

Όταν η τριβή δεν επαρκεί για να έχουμε μόνο κύλιση

   
 Ο τροχός του σχήματος είναι ομογενής, έχει μάζα m = 50 kg και ακτίνα R = 100 mm.
 Στην περιφέρειά του υπάρχει εγκοπή βάθους h = 40 mm, μέσα στην οποία είναι τυλιγμένο αβαρές λεπτό νήμα μεγάλου μήκους. Τη στιγμή t = 0, στο ελεύθερο άκρο του νήματος ασκούμε σταθερή δύναμη F με διεύθυνση παράλληλη προς το οριζόντιο επίπεδο, με τη βοήθεια της οποίας ο τροχός τίθεται σε κίνηση χωρίς το νήμα να γλιστράει στο αυλάκι.
Α. Αν ο συντελεστής οριακής στατικής τριβής μs είναι 0,2 να εξετάσετε αν ο τροχός θα κυλίσει χωρίς ολίσθηση.
Β. Να υπολογίσετε τη επιτάχυνση του κέντρου μάζας του τροχού και τη γωνιακή του επιτάχυνση. 
Γ. Τη στιγμή t1 η ταχύτητα του κέντρου μάζας του τροχού είναι ίση με 20 m/s. Πόση είναι τότε η στροφορμή του τροχού ως προς άξονα κάθετο στο κέντρο του;

Δευτέρα 20 Μαΐου 2013

S.O.S  ΘΕΜΑΤΑ ΣΤΟ ΣΤΕΡΕΟ - ΜΕΡΟΣ 2ο

Δύο στερεά σώματα περιστρέφονται ...

9.  Δύο στερεά σώματα περιστρέφονται γύρω από σταθερούς άξονες ως προς τους οποίους έχουν ίσες στροφορμές  L1  και  L2,  ενώ οι ροπές αδράνειάς τους συνδέονται με τη σχέση: Ι2 = 2Ι1.
Α.  Με ποια από τις παρακάτω σχέσεις συνδέονται οι κινητικές τους ενέργειες;
    α.  Κ2 = Κ1,       β.  Κ2 = 2 Κ1,       γ. Κ1 = 2 Κ2,       δ.  Κ2 = 4 Κ1
Β. Αιτιολογείστε την απάντησή σας.


Ένα απομονωμένο ομογενές άστρο …


11.  Ένα απομονωμένο ομογενές άστρο περιστρέφεται γύρω από μία διάμετρό του έχοντας κινητική ενέργεια λόγω περιστροφής Κ.
Α.  Αν λόγω  βαρυτικής  κατάρρευσης η ακτίνα του άστρου ελαττωθεί στο μισό της αρχικής της τιμής, τότε το έργο των βαρυτικών δυνάμεων κατάρρευσης είναι:
α.  Κ,       β. 2Κ,        γ. 3Κ
Β. Να αιτιολογήσετε την απάντησή σας.
Θεωρείστε ότι κατά την κατάρρευση του άστρου δεν εκτινάσσεται ύλη στο διάστημα.

Δευτέρα 21 Μαΐου 2012

ΤΡΟΧΟΙ ΚΑΙ … ΣΧΟΙΝΙΑ


1. Κύλιση σε λείο οριζόντιο επίπεδο

(Κι αν σας έλεγαν ότι ένας τροχός μπορεί, σε ένα εντελώς γλιστερό δρόμο, να κυλίεται χωρίς να γλιστράει ακόμη κι όταν επιταχύνεται, ακόμη κι όταν φρενάρει;)

Ο κυλινδρικός τροχός του σχήματος, ακτίνας R = 0,2 m, διαθέτει μια κεντρική εγκοπή ακτίνας r γύρω από την οποία είναι τυλιγμένο ένα λεπτό νήμα. Αρχικά ο τροχός είναι ακίνητος πάνω σε λείο οριζόντιο δάπεδο. Τραβάμε οριζόντια το άκρο Α του νήματος με δύναμη F = 10 Ν και θέτουμε τον τροχό σε κίνηση.
Α. Να δείξετε ότι για μια ορισμένη τιμή της ακτίνας r, ανεξάρτητη από την τιμή της F και της επιτάχυνσης του κέντρου μάζας, ο κύλινδρος είναι δυνατόν να κυλίεται χωρίς να ολισθαίνει.
Β.  Αν η ακτίνα r έχει την τιμή που υπολογίσατε πιο πριν, τότε:
1. Να υπολογίσετε το έργο που παράγεται από την F σε κάθε ...

Δείτε:

Σάββατο 19 Μαΐου 2012

ΡΑΒΔΟΣ ΚΑΙ ΤΡΟΧΟΣ ΣΤΟ ΕΣΩΤΕΡΙΚΟ ΚΥΛΙΝΔΡΙΚΗΣ ΕΠΙΦΑΝΕΙΑΣ



Ο τροχός αποτελείται από ένα στεφάνι μάζας 4 kgr ακτίνας 0,25 m το οποίο μπορεί να περιστρέφεται γύρω από οριζόντιο άξονα που διέρχεται από το κέντρο του Κ, με τη βοήθεια μεταλλικών ακτίνων αμελητέας μάζας. Ο άξονας του τροχού προσαρτάται στην οριζόντια ράβδο ΟΚ μάζας m = 3 kgr που το άκρο της Ο είναι αρθρωμένο σε ακλόνητο στήριγμα. Αν το σύστημα αφήνεται από την ηρεμία με τη ράβδο αρχικά οριζόντια, όπως φαίνεται στο σχήμα  και αν ο τροχός κυλίεται στην κυλινδρική επιφάνεια χωρίς να ολισθαίνει, να υπολογίσετε την ταχύτητα του κέντρο Κ του τροχού όταν φτάνει στην κατώτερη θέση Κ΄.

Δίνονται: OK = R = 0,5 m, ΟC = 0,3 mIράβδου(Ο) = 0,32 kgr.m2 και g = 10 m/s2 και ότι η μάζα του τροχού είναι συγκεντρωμένη στην περιφέρειά του. Οι τριβές στο άξονα περιστροφής και στην άρθρωση είναι αμελητέες.

Δείτε:

Δευτέρα 23 Απριλίου 2012

 Το «ταυ».


Ένα εκκρεμές (σχήμα 1) αποτελείται από δύο παρόμοιες ομογενείς λεπτές ράβδους α και β, με ίδιο μήκος L = 0,6 m και ίδια μάζα m = 2/3 kgr, συγκολλημένες κάθετα μεταξύ τους έτσι ώστε το ένα άκρο της α να συμπίπτει με το μέσον της β. Με τον τρόπο αυτό σχηματίζουν ένα Τ το οποίο μπορεί να περιστρέφεται γύρω από οριζόντιο άξονα, που διέρχεται από το άλλο άκρο Ο της α και είναι κάθετος στο επίπεδο που ορίζεται από τις ράβδους. Έτσι, το «Τ» συμπεριφέρεται ως εκκρεμές  που μπορεί να ταλαντώνεται  πάνω στο κατακόρυφο επίπεδο που ορίζεται από αυτό.
Α. Να υπολογίσετε τη ροπή αδράνειας του «Τ» γύρω από τον άξονα περιστροφής του.

Β. Στο σχήμα 2, το «Τ» ισορροπεί μαζί με ένα στερεό, το οποίο αποτελείται από δύο ομόκεντρες, κολλημένες μεταξύ τους, ομογενείς τροχαλίες. Η κοινή ισορροπία επιτυγχάνεται με τη βοήθεια δύο κατακόρυφων λεπτών σχοινιών που είναι τυλιγμένα στα αυλάκια των τροχαλιών του στερεού. H ακτίνα R της μεγάλης τροχαλίας είναι 0,2 m, ενώ της μικρής είναι r = 0,1 m.
Να υπολογίσετε τη μάζα m1 του στερεού.

Γ. Κάποια στιγμή κόβουμε το σχοινί με το οποίο συνδέονται τα δύο σώματα και έτσι το «Τ» αρχίζει να περιστρέφεται γύρω από το Ο, ενώ το στερεό αρχίζει να κατεβαίνει προς τα κάτω και το σχοινί που είναι τυλιγμένο στη μικρή τροχαλία να ξετυλίγεται χωρίς να γλιστράει.
Να βρείτε τη μέγιστη κινητική ενέργεια του «Τ».                                                        
Δ.  Αν ο ρυθμός μεταβολής της ορμής του στερεού είναι 5 kgr.m2, να υπολογίσετε: 

Δείτε: