Η φύση αγαπά την αλήθεια, και η αλήθεια της φύσης διεκδικεί το δικαίωμα να εκτίθεται μόνο σε όσους την ποθούν. Φ. Ντοστογιέφσκι

Εμφάνιση αναρτήσεων με ετικέτα 4.1.γ Ασκήσεις. Εμφάνιση όλων των αναρτήσεων
Εμφάνιση αναρτήσεων με ετικέτα 4.1.γ Ασκήσεις. Εμφάνιση όλων των αναρτήσεων

Τρίτη 10 Νοεμβρίου 2020

Ένα επιτραπέζιο παιχνίδι

 


Οι σανίδες Α και Β του σχήματος κινούνται μαζί, η μια ακριβώς πάνω στην άλλη, με κοινή ταχύτητα υ, κατά μήκος μιας λείας οριζόντιας επιφάνειας. Κάποια στιγμή η σανίδα Β συγκρούεται πλαστικά και μετωπικά με μια ακίνητη όμοια σανίδα C. Μετά τη σύγκρουση, οι σανίδες B και C κινούνται μαζί, και η σανίδα Α γλιστρά στην πάνω πλευρά της C και σταματά την κίνησή της σε σχέση με τη C στη θέση που φαίνεται στο σχήμα.

Ποιο είναι το μήκος κάθε σανίδας;

Και οι τρεις σανίδες έχουν την ίδια μάζα m, το ίδιο μήκος L και ίδιο σχήμα. Μεταξύ των Α και Β δεν υπάρχει τριβή, ο συντελεστής τριβής ολισθήσεως μεταξύ των σανίδων A και C είναι μ. Η επιτάχυνση g λόγω βαρύτητας είναι γνωστή.  

Η Λύση σε pdf:

Η Λύση σε word:



Δευτέρα 9 Νοεμβρίου 2020

Ελαστική μετωπική κρούση δύο σφαιρών με αρχική ταχύτητα, όπου τελικά η μια ακινητοποιείται (δύο περιπτώσεις)

 Δύο λείες σφαίρες Α και Β με μάζες mΑ και mΒ, που κινούνται σε λείο οριζόντιο επίπεδο με ταχύτητες υΑ = 6 m/s και υΒ = 1,5 m/s, αντίστοιχα, συγκρούονται μετωπικά και ελαστικά.

Α. Να βρείτε το λόγο mΑ/mΒ των μαζών των  δύο σφαιρών ώστε η σφαίρα Α μετά τη σύγκρουση να ακινητοποιηθεί αν οι ταχύτητες των δύο σφαιρών:


 α. έχουν την ίδια κατεύθυνση (ομόρροπες)

 

β. έχουν αντίθετη κατεύθυνση (αντίρροπες)


Β. Να υπολογίσετε την ταχύτητα της σφαίρας Β και στις δύο περιπτώσεις.

Απάντηση: 

Α. α. 0,5,  β. 1,5.    Β. 4,5 m/s,  7,5 m/s

Η Λύση σε pdf:


Παρασκευή 19 Οκτωβρίου 2018


6. Ένας πολύ μεγάλος αριθμός κρούσεων ανά sec και η πίεση που προκαλούν
Η παρακάτω ερώτηση πολλαπλής επιλογής έχει πέσει σε δημόσιες εξετάσεις εισαγωγής στην ανώτατη εκπαίδευση κάποιας μεγάλης χώρας.
Η μάζα ενός μορίου υδρογόνου είναι 3,32·10-27 kg. Αν 1023 μόρια υδρογόνου προσπίπτουν ανά sec σε μια λεία επίπεδη επιφάνεια 2 cm2 υπό γωνία 450 με ταχύτητα 103 m/s και αναπηδούν ελαστικά, τότε η πίεση στην επιφάνεια είναι:
   α. 2,35·102 Ν/m2 β.  2,35·103 Ν/m2,   γ. 4,70·103 Ν/m2  

Σκέφτηκα να βρω τη συνολική μεταβολή ορμής των μορίων και να διαιρέσω με το χρόνο 1s, δηλαδή, (dP1+dP2+dP3+ … +dPN)/(1 s), αλλά δε βρίσκω αυτή τη σκέψη σωστή, γιατί το πηλίκο αυτό μπορεί να σπάσει σε Ν κλάσματα με παρονομαστή 1 s και έτσι είναι σα να θεωρώ ότι κάθε μεταβολή διαρκεί 1 s. Κάθε τέτοια όμως μεταβολή διαρκεί όσο και η κρούση κάθε μορίου, δηλαδή απειροελάχιστο χρόνο. Έχω μπερδευτεί. 
Απάντηση: 

Σάββατο 29 Σεπτεμβρίου 2018

Ελαστική κρούση σε δυο διαστάσεις.

                         Δύο παραλλαγές της 5.41 του σχολικού

 1η 

Μια σφαίρα Α ακτίνας R κινείται με ταχύτητα v και συγκρούεται ελαστικά με μια άλλη όμοια σφαίρα Β που αρχικά ηρεμεί. Το κέντρο της σφαίρας Β βρίσκεται σε απόσταση b από την ευθεία στην οποία κινείται το κέντρο της Α.
Να βρείτε τις ταχύτητες των δύο σφαιρών μετά την κρούση.



Τρίτη 11 Σεπτεμβρίου 2018

Ταχύτητα απομάκρυνσης προς ταχύτητα προσέγγισης


Δύο σφαιρικές χάντρες Α και Β με μάζες 2m και m, αντίστοιχα, είναι περασμένες σε ένα κατακόρυφο λείο κυκλικό σύρμα ακτίνας 10 m, κατά μήκος του οποίου μπορούν να ολισθαίνουν χωρίς τριβές. Η χάντρα Β βρίσκεται ακίνητη στο κατώτερο σημείο του σύρματος, ενώ η χάντρα Α αρχικά συγκρατείται σε μια θέση, που βρίσκεται στην ίδια οριζόντιο ευθεία με το κέντρο του κυκλικού σύρματος. Αν δώσουμε στην Α μια αρχική ταχύτητα ίση με 60 m/s προς τα κάτω θα συγκρουστεί με τη Β, η οποία, στη συνέχεια, θα ανέλθει ως το αντιδιαμετρικό σημείο από το οποίο ξεκίνησε η Α.
α. Να δείξετε ότι η παραπάνω κρούση δεν είναι ελαστική.
β. Να βρείτε το πηλίκο της ταχύτητας, με την οποία οι χάντρες στο τέλος της κρούσης απομακρύνονται η μία από την άλλη, προς την ταχύτητα της μεταξύ τους προσέγγισης ελάχιστα πριν την κρούση.
γ. Αν η κρούση ήταν ελαστική ποια θα ήταν η τιμή του παραπάνω πηλίκου;
Δίνεται η επιτάχυνση βαρύτητας g = 9,8 m/s2


Πέμπτη 6 Σεπτεμβρίου 2018

Τρία τετράγωνα κι ένα στρογγυλό πλακάκι. Μια “περίεργη” κρούση


Ένα λείο επίπεδο στρογγυλό πλακάκι κινείται πάνω σε ένα λείο οριζόντιο επίπεδο και προσπίπτει με ταχύτητα υ σε ένα σύνολο από τρία ίδια τετράγωνα λεία πλακάκια, που βρίσκονται ακίνητα πάνω στο επίπεδο, τοποθετημένα το ένα δίπλα στο άλλο όπως φαίνεται στο σχήμα.
Και τα τέσσερα πλακάκια, το στρογγυλό και τα τρία τετράγωνα, έχουν ίσες μάζες και ίδιο ύψος και η διάμετρος του στρογγυλού είναι ίση με το μήκος της πλευράς κάθε τετράγωνου.
α) Να σχεδιάσετε τις δυνάμεις μεταξύ των σωμάτων στη διάρκεια της κρούσης.
β) Να προσδιορίσετε την ταχύτητα που θα έχει κάθε πλακάκι μετά την κρούση, αν αυτή θεωρηθεί ελαστική.
(Πηγή: SS Krotovproblems In Physics – διασκευή και απόδοση προσαρμοσμένη στις απαιτήσεις των Πανελληνίων: Τάσος Τζανόπουλος). 

Τετάρτη 5 Σεπτεμβρίου 2018

Δύο σφαίρες σε λείο κυκλικό αυλάκι. Μια όμορφη συμμετρία


Δύο μικρές λείες ελαστικές σφαίρες Α και Β με μάζες 3m και m, αντίστοιχα, ηρεμούν αρχικά μέσα σε ένα οριζόντιο λείο κυκλικό αυλάκι σε θέσεις αντιδιαμετρικές. Τη στιγμή t = 0 δίνουμε μια ώθηση στη σφαίρα Α, η οποία αρχίζει να κυλά με σταθερή γραμμική ταχύτητα υ και μετά από χρόνο t0 = 2 sec συγκρούεται για 1η φορά, κεντρικά, με τη σφαίρα Β.
Να βρείτε:
α. Ποια χρονική στιγμή και σε ποια θέση οι δύο σφαίρες θα συγκρουστούν για 2η φορά.

Δύο σφαίρες σε λείο κυκλικό αυλάκι και «το παράδοξο της 2ης κρούσης»


Δύο μικρές λείες ελαστικές σφαίρες τοποθετούνται σε ένα οριζόντιο λείο κυκλικό αυλάκι, σε θέσεις αντιδιαμετρικές. Σπρώχνουμε τις δύο σφαίρες να κινηθούν αντίθετα με ταχύτητες υΑ και υΒ, αντίστοιχα. Οι δύο σφαίρες κινούνται με σταθερή γωνιακή ταχύτητα και μετά από χρόνο t0 συγκρούονται κεντρικά.

α. Σε πόσο χρόνο οι δύο σφαίρες θα ξανασυγκρουστούν;

Τετάρτη 11 Ιουλίου 2018

Κρούση δύο σφαιρών μετά από ελεύθερη πτώση και το παράδοξο του μέγιστου ύψους


Δύο ελαστικές σφαίρες με μάζες m1  και m2, αφήνονται διαδοχικά να πέσουν από το ίδιο ύψος h πάνω σε οριζόντιο επίπεδο. Οι σφαίρες κινούνται επάνω στην ίδια κατακόρυφο. Αφήνεται πρώτα η σφαίρα μάζας m1 και αμέσως μετά η σφαίρα μάζας m2. Η σφαίρα μάζας m1 προσκρούει στο οριζόντιο επίπεδο και αρχίζει να κινείται κατακόρυφα προς τα επάνω. Μόλις αποχωριστεί από το επίπεδο συγκρούεται μετωπικά με την κατερχόμενη   σφαίρα μάζας m2. Όλες οι κρούσεις είναι ελαστικές και γίνονται πάνω στην ίδια κατακόρυφο.

α. Για ποια τιμή του λόγου m2/ m1 των μαζών, η σφαίρα μάζας m2, μετά την κρούση, αποκτά το μεγαλύτερο δυνατό ποσοστό της συνολικής ενέργειας του συστήματος;

β. Για ποια τιμή του λόγου m2/ m1 των μαζών των δύο σφαιρών, η σφαίρα με μάζα m2 θα ανέλθει στο μέγιστο δυνατό ύψος;  Να δικαιολογήσετε την απάντησή σας.

Να θεωρηθεί ότι, όταν οι σφαίρες συγκρούονται, έχουν διανύσει την ίδια κατακόρυφη απόσταση h από το σημείο εκκίνησης. Η αντίσταση του αέρα θεωρείται αμελητέα.

 

          Απάντηση:


Τρίτη 3 Ιουλίου 2018

Κρούση με τριβή, πώς αντιμετωπίζεται


Ένα κιβώτιο μάζας Μ = 5 kg κινείται σε οριζόντιο επίπεδο. Ένα σώμα μάζας m = 1 kg πέφτει κατακόρυφα πάνω στο κιβώτιο με ταχύτητα υ1 = 10 m/s, ακριβώς τη στιγμή που αυτό περνά από κάτω του κινούμενο με ταχύτητα υ2 = 2 m/s. Η κρούση είναι πλαστική και διαρκεί αμελητέο χρόνο.

Παρασκευή 25 Μαΐου 2018

Μια πλάγια ελαστική κρούση (από θέμα Ολυμπιάδας Φυσικής)


Δύο σφαίρες, ίσων μαζών, συγκρούονται ελαστικά. Αν υ1, υ2 και V1 και V2 είναι τα μέτρα των ταχυτήτων πριν και μετά την κρούση, αντίστοιχα, και φ η γωνία που σχημάτιζαν οι διευθύνσεις των ταχυτήτων πριν την κρούση, να βρείτε τη γωνία θ που σχηματίζουν οι διευθύνσεις των ταχυτήτων μετά την κρούση.

Δευτέρα 10 Νοεμβρίου 2014

ΠΕΝΤΕ ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΟΡΙΖΟΝΤΙΟ ΕΛΑΤΗΡΙΟ ΜΕΤΑ ΑΠΟ ΚΡΟΥΣΗ


1. Όπου θα μας απασχολήσει η μέγιστη ισχύς της δύναμης ελατηρίου.


 Σώμα μάζας M = 1kgr βρίσκεται πάνω σε λείο οριζόντιο επίπεδο και είναι προσδεμένο στην άκρη οριζόντιου ελατηρίου σταθεράς k = 100 Ν/m, η άλλη άκρη του οποίου είναι στερεωμένη ακλόνητα.
  Θέτουμε το σώμα σε α.α.τ. πλάτους  A1 = 3,2 m.  Ένα βλήμα μάζας m = 0,21 kgr που κινείται στη διεύθυνση του άξονα του ελατηρίου με ταχύτητα υ = 100 m/sec, συγκρούεται πλαστικά με το σώμα, τη στιγμή που αυτό βρίσκεται  στη θέση ισορροπίας του, κινούμενο προς το βλήμα. Να υπολογίσετε:

2. Πλαστική κρούση με αύξηση της ενέργειας ταλάντωσης; Κι όμως γίνεται!


Σώμα μάζας M = 2,5 kgr βρίσκεται πάνω σε λείο οριζόντιο επίπεδο και είναι προσδεμένο στην άκρη οριζόντιου ελατηρίου σταθεράς k = 100 Ν/m. Το άλλο άκρο του ελατηρίου είναι στερεωμένο σε ακλόνητο τοίχο.
  Θέτουμε το σώμα σε α.α.τ. πλάτους 0,5 m.  Ένα βλήμα μάζας m = 0,5 kgr που κινείται στη διεύθυνση του άξονα του ελατηρίου με ταχύτητα υ = 30 m/sec, συγκρούεται με το σώμα, τη στιγμή που αυτό βρίσκεται  στην αρνητική ακραία θέση του, και σφηνώνεται σ’ αυτό. Να προσδιορίσετε:
α)  Την ενέργεια ...

Συνέχεια ...

3. Όπου το μέτρο του ρυθμού μεταβολής της δυναμικής ενέργειας του ελατηρίου είναι ζητούμενο


 Σώμα μάζας M1 = 1 kgr βρίσκεται πάνω σε λείο οριζόντιο επίπεδο και είναι προσδεμένο στην άκρη οριζόντιου ελατηρίου που έχει σταθερά k = 100 Ν/m και το άλλο του άκρο στερεωμένο ακλόνητα.
 Θέτουμε το σώμα αυτό σε α.α.τ. πλάτους Α1 = 2 m.  Ένα άλλο σώμα μάζας Μ2 = 2 kgr, που κινείται στη διεύθυνση του άξονα του ελατηρίου με ταχύτητα υ2 = 20 m/sec, συγκρούεται πλαστικά με το πρώτο σώμα  στη θέση όπου η κινητική ενέργεια ταλάντωσης είναι ίση με το μισό της ενέργειας ταλάντωσης. Το συσσωμάτωμα, που δημιουργείται, ξεκινά μια νέα α.α.τ. με πλάτος Α2. Η απομάκρυνση του Μ1 στη θέση της σύγκρουσης είναι θετική και πριν τη σύγκρουση κινούνταν προς τη θετική ακραία θέση, αντίθετα από το Μ2. Να προσδιορίσετε: 

4. Ρυθμός μεταβολής του μήκους του ελατηρίου και μηδενισμός της ισχύος της δύναμής του

 Πάνω σε ένα λείο οριζόντιο επίπεδο ηρεμεί αρχικά, δεμένο στο ένα άκρο ενός οριζόντιου ελατηρίου, σώμα μάζας M = 2 kgr. Το ελατήριο έχει σταθερά ελαστικότητας k = 200 Ν/m και η άλλη άκρη του είναι στερεωμένη ακλόνητα.
  Θέτουμε το σώμα αυτό σε α.α.τ. πλάτους Α1 = 2 m. Ένα άλλο σώμα μάζας m = 0,25 kgr, που κινείται στη διεύθυνση του άξονα του ελατηρίου με ταχύτητα υ2 = 80 m/sec, συγκρούεται πλαστικά με το πρώτο σώμα, τη στιγμή που αυτό βρίσκεται  στη θέση όπου η δυναμική ενέργεια ταλάντωσης είναι ίση με την κινητική του. Το συσσωμάτωμα που δημιουργείται ξεκινά μια νέα α.α.τ με πλάτος Α2. Η απομάκρυνση του Μ στη θέση της σύγκρουσης είναι θετική και πριν τη σύγκρουση κινούνταν προς τη θετική ακραία θέση, αντίθετα από το m.
Α. Να προσδιορίσετε:
Α1. Το ρυθμό μεταβολής του μήκους του ελατηρίου ελάχιστα ... 

Συνέχεια ... 

5. Όπου με κατάλληλη ταχύτητα του ενός σώματος έχουμε τις ελάχιστες δυνατές απώλειες ενέργειας


Σώμα μάζας M = 1 kgr βρίσκεται πάνω σε λείο οριζόντιο επίπεδο και είναι προσδεμένο στην άκρη οριζόντιου ελατηρίου σταθεράς  k  = 100 Ν/m, η άλλη άκρη του οποίου είναι στερεωμένη ακλόνητα. 
  Θέτουμε το σώμα σε α.α.τ. πλάτους  A1 = 1 m.  Ένα βλήμα μάζας m = 0,08 kgr,  που κινείται στη διεύθυνση του άξονα του ελατηρίου με ταχύτητα υ1, συγκρούεται πλαστικά με το σώμα, τη στιγμή που αυτό βρίσκεται  στη θέση x = -0,6 m, κινούμενο με ταχύτητα υ προς την αρνητική ακραία θέση. Μετά την κρούση το συσσωμάτωμα κάνει α.α.τ. με πλάτος Α΄= 1,2 m.

Να υπολογίσετε:  ....

Τετάρτη 25 Απριλίου 2012

ΜΗ ΚΕΝΤΡΙΚΗ ΕΛΑΣΤΙΚΗ ΚΡΟΥΣΗ


Μια προέκταση της άσκησης 5.41 σελ. 180 του σχολικού βιβλίου

Α.  Να δείξετε ότι μετά την πλάγια ελαστική κρούση μεταξύ δύο σωμάτων ίδιας μάζας που το ένα αρχικά ήταν ακίνητο, τα δύο σώματα θα κινηθούν προς κάθετες μεταξύ τους κατευθύνσεις.
Β. Πάνω σε ένα λείο οριζόντιο τραπέζι ηρεμεί ένα σφαιρίδιο Σ2 μάζας m = 1 kgr στερεωμένο στην άκρη οριζόντιου ελατηρίου σταθεράς k = 100 N/m, του οποίου το άλλο άκρο συγκρατείται από ακλόνητο στήριγμα. Ένα δεύτερο σφαιρίδιο Σ1 ίδιας μάζας με το Σ2 κινείται με ταχύτητα υ1 =  2 m/sec πάνω σε μια ευθεία που δε διέρχεται από το κέντρο του Σ2 και σχηματίζει γωνία φ = 1350 με τον άξονα του ελατηρίου.  Ακολουθεί πλάγια ελαστική κρούση στο τέλος της οποίας διαπιστώνεται ότι το Σ2 κινείται κατά μήκος του άξονα του ελατηρίου κάνοντας απλή αρμονική ταλάντωση.
   1.  Ποια είναι η διεύθυνση κίνησης του Σ1 μετά την κρούση;  Πόσο είναι το μέτρο της ταχύτητάς του μετά την κρούση;                                                             
   2.  Να υπολογίστε τη μέγιστη ταχύτητα, το πλάτος της ταλάντωσης, και τη μέγιστη επιτάχυνση του Σ2.                                                                
   3. Να παραστήσετε σε κοινό ορθογώνιο σύστημα αξόνων τις συναρτήσεις της κινητικής, της δυναμικής και της ολικής ενέργειας της ταλάντωσης, σε συνάρτηση με την ταχύτητα.      

Δείτε: