«Ένας σκιέρ μάζας Μ, βρίσκεται ακίνητος
πάνω σε μια παγωμένη οριζόντια επιφάνεια κρατώντας μια μπάλα μάζας m.
Κάποια στιγμή πετά οριζόντια τη μπάλα με ταχύτητα υ προς ένα κατακόρυφο τοίχο.
Η μπάλα συγκρούεται ελαστικά με τον τοίχο, αναπηδά και επιστρέφει στην αγκαλιά
του σκιέρ. Ποια είναι η τελική ταχύτητα του σκιέρ, αν αγνοήσουμε το πεδίο
βαρύτητας και τις αντιστάσεις του αέρα;»
Η απάντηση στο βιβλίο είναι η εξής:
Εφαρμόζοντας δύο φορές την Α.Δ.Ο θα
βρούμε την ταχύτητα του σκιέρ αμέσως μετά το πιάσιμο της μπάλας. Όταν πετάει
την μπάλα προς τον τοίχο,
Μυ1 = mυ
(1)
Και όταν πιάνει την μπάλα κατά την
επιστροφή της,
(
Μ + m)V1 = Mυ1 + mυ = 2mυ
(2)
V1 = 2mυ⁄m+M
(3)
Έχω την εξής απορία που αφορά στη σχέση (2). Γνωρίζω ότι η σύγκρουση της μπάλας με τον άνθρωπο είναι ανελαστική και για αυτό τα δύο σώματα θα αποκτήσουν την ίδια ταχύτητα. Δεν καταλαβαίνω όμως γιατί οι συγγραφείς έχουν εξισώσει το ( Μ + m)V1 με το 2mυ. Πώς προέκυψε το 2mυ!





