Η φύση αγαπά την αλήθεια, και η αλήθεια της φύσης διεκδικεί το δικαίωμα να εκτίθεται μόνο σε όσους την ποθούν. Φ. Ντοστογιέφσκι

Τρίτη 8 Μαΐου 2018

Ράβδος με διαφορετικές ταχύτητες στα άκρα της


Στο σχήμα φαίνονται, κάποια χρονική στιγμή t1, οι ταχύτητες των άκρων μιας ομογενούς ράβδου η οποία κινείται πάνω σε λείο οριζόντιο επίπεδο. Το μήκος της ράβδου είναι 1 m και η μάζα της 3 kg.
Να βρείτε:
α. Την κινητική ενέργεια της ράβδου

Δευτέρα 7 Μαΐου 2018

Από την ταχύτητα ολίσθησης στην ταχύτητα κύλισης



Μια μπάλα, που αρχικά ηρεμεί σε οριζόντιο επίπεδο, δέχεται μια στιγμιαία ώθηση και ξεκινάει με ταχύτητα υ0 = 2,1 m/s, χωρίς αρχικά να κυλίεται (που σημαίνει ότι αρχικά κινείται ολισθαίνοντας στο έδαφος).  Επειδή όμως η τριβή ολίσθησης ανάμεσα στην μπάλα και στο έδαφος ασκεί μια ροπή πάνω της, η μπάλα θα αρχίσει να περιστρέφεται και τελικά η γωνιακή της ταχύτητα θα πάρει τέτοια τιμή, ώστε η μπάλα θα πάψει να γλιστράει.

Κίνηση σφαίρας σε ημισφαίριο


Μια σφαίρα, μάζας m = 1 kg και ακτίνας r = 0,1 m συγκρατείται αρχικά στη θέση που φαίνεται στο σχήμα. Κάποια στιγμή αφήνεται ελεύθερη (χωρίς να την σπρώξουμε).
α. Η σφαίρα κυλίεται στο κοίλο ημισφαιρικό δοχείο, ακτίνας R = 1,1 m, του σχήματος χωρίς να ολισθαίνει. Με πόση ταχύτητα διέρχεται από το χαμηλότερο σημείο Β του δοχείου;
β. Αν στη συνέχεια (μετά το σημείο Β) η εσωτερική επιφάνεια του δοχείου είναι λεία, να εξετάσετε, χωρίς υπολογισμούς:

Σάββατο 5 Μαΐου 2018

Ρυμούλκηση (Μια "εύκολη" και μια "εκκεντρική")

1. Ένα βαγόνι τραίνου (η … εύκολη)
Ένα βαγόνι τραίνου, φορτωμένο με αυτοκίνητα, έχει μάζα 6000 kg και ρυμουλκείται σε ένα λείο ανηφορικό δρόμο με κλίση 1:30 (ημθ = 1/30), με τη βοήθεια ενός σχοινιού, που τυλίγεται χωρίς να γλιστράει γύρω από ένα κυλινδρικό τύμπανο με διάμετρο 1 m και ροπή αδράνειας 200 kg·m2.
Στο τύμπανο ενεργεί σταθερή ροπή τ = 3000 Ν·m και περιστρέφεται γύρω από τον άξονά του, ο οποίος είναι ακλόνητα στερεωμένος, χωρίς τριβές, με σταθερή γωνιακή επιτάχυνση.

2. Μια μαρμάρινη κυλινδρική κολώνα (η … εκκεντρική)


Στη δεύτερη αυτή άσκηση ρυμουλκείται, όπως φαίνεται στο σχήμα, μια ομογενής μαρμάρινη κυλινδρική κολώνα, όπως  πριν, με τις εξής αλλαγές και προσθήκες:
i. Ο δρόμος δεν είναι λείος και ο κύλινδρος κυλίεται χωρίς να ολισθαίνει.
ii. Η κολώνα έχει μάζα Μ = 6000 kg, ακτίνα R1 = 0,5 m και ροπή αδράνειας Ι1 = 750 kg·m2, ως προς τον γεωμετρικό της άξονα.
Η δύναμη από το σχοινί ενεργεί στο κέντρο μάζας του κυλίνδρου, κάθετα στον άξονα, και παράλληλα προς το δρόμο. Όλα τα άλλα μεγέθη είναι ίδια.

Δευτέρα 30 Απριλίου 2018

Η απάντηση στο παράδοξο της συνολικής στροφορμής δύο δίσκων


Δεν έχουμε εδώ διατήρηση της στροφορμής του συστήματος των δύο δίσκων. Αν ίσχυε, θα είχαμε: Ι1ω0 = Ι1ω1 – Ι2ω2, δηλαδή Ι1ω1 = Ι1ω0 + Ι2ω2, οπότε ω1 > ω0 και άρα η κινητική ενέργεια κάθε δίσκου θα αύξαινε, άρα και του συστήματος. Φυσικά, αυτό αντίκειται στην Α.Δ.Ε. συστήματος.
Τι συμβαίνει λοιπόν; 
Κοιτάξτε το αριστερό σχήμα (α): Θεωρήστε τους δύο δίσκους πάνω σε λείο οριζόντιο επίπεδο. Είναι η στιγμή που φέρνουμε σε επαφή τις περιφέρειες των  δύο δίσκων. Έχουν σχεδιαστεί οι δύο τριβές ολίσθησης (με κόκκινο χρώμα) στις περιφέρειες των δύο δίσκων. Είναι δύο δυνάμεις αντίθετες (δράση – αντίδραση), που δρουν στα σημεία επαφής των περιφερειών των δύο δίσκων. Επειδή οι εξωτερικές δυνάμεις, βάρος -  αντίδραση δαπέδου, έχουν συνισταμένη μηδέν, κάθε δίσκος δέχεται μια καθαρή δύναμη Τ, που παρουσιάζει ροπή ως προς το κέντρο μάζας του. Το αποτέλεσμα είναι γνωστό: Ο δίσκος 2 θα εκτελέσει μια σύνθετη κίνηση, μεταφορική κατά τη διεύθυνση της Τ και στροφική γύρω από το κέντρο μάζας του, κατά τη φορά της ροπής της Τ. Αντίστοιχα, ο δίσκος 1 θα εκτελέσει και αυτός μια μεταφορική κίνηση κατά τη φορά της Τ, ενώ η στροφική κίνηση θα περιοριστεί και θα μειωθεί (λόγω της ροπής της Τ) η γωνιακή του ταχύτητα. Έτσι, σε ελάχιστο χρονικό διάστημα, οι δύο δίσκοι θα απομακρυνθούν κινούμενοι όπως στο σχήμα (β).
Όμως, στο πρόβλημά μας, υπάρχουν δύο ακλόνητοι άξονες περιστροφής κάθετοι στα κέντρα των δύο δίσκων   και, όπως φαίνεται από την παραπάνω ανάλυση, αυτοί οι δύο άξονες δε θα επιτρέψουν τη μεταφορική κίνηση των δύο δίσκων. Πρέπει, λοιπόν, στη διάρκεια που οι δύο περιφέρειες ασκούν τριβή η μία στην άλλη, ο άξονας κάθε δίσκου να ασκεί δύναμη αντίθετη της τριβής που δέχεται, (στο σχήμα γ φαίνονται με μπλε χρώμα), ώστε να ισχύει σε καθένα δίσκο η συνθήκη ΣF = 0*. 

Οι δυνάμεις αυτές των αξόνων είναι εξωτερικές δυνάμεις, και για το σύστημα των δύο δίσκων αποτελούν ζεύγος εξωτερικών δυνάμεων. Αν γνωρίζουμε τις τριβές Τ, τότε στο σύστημα των δύο δίσκων ενεργεί μια εξωτερική ροπή -Τ(r1 + r2) κατά τη φορά των δεικτών του ρολογιού (αρνητική).

Επειδή η εξωτερική ροπή έχει φορά αντίθετη από την αρχική στροφορμή του συστήματος, η στροφορμή του συστήματος μειώνεται.

* Ουσιαστικά, η ροπή Tr1 ή Tr2, σε κάθε δίσκο, είναι η ροπή του ζεύγους των δυνάμεων Τ που ενεργεί σε καθένα από αυτούς.

Στο σύστημα των δύο δίσκων ενεργούν, επίσης, και άλλα δύο ζεύγη δυνάμεων με μηδενική ροπή, αφού οι άξονές τους ταυτίζονται. Είναι οι οριζόντιες δυνάμεις Ν με τις οποίες οι άξονες κρατούν σε επαφή τους δύο δίσκους (οι κόκκινες, που είναι εσωτερικές στο σύστημα των δύο δίσκων, απαραίτητες για την εμφάνιση των τριβών, Τ = μΝ) και οι μπλε που είναι εξωτερικές δυνάμεις από τους δύο άξονες προς τους δίσκους, με συνισταμένη μηδέν.  


Είναι, λοιπόν, φανερό ότι δεν μπορούμε να εφαρμόσουμε καμία από τις αρχές διατήρησης (ενέργειας ή στροφορμής).
Τότε, πώς θα λύσουμε την άσκηση;
Μόνο με τη βοήθεια του θεμελιώδη νόμου της στροφικής κίνησης:
Έστω Δt το χρονικό διάστημα ολίσθησης των περιφερειών των δύο δίσκων. Όταν οι περιφέρειες σταματήσουν να ολισθαίνουν μεταξύ τους, τότε τα σημεία επαφής τους θα έχουν ίσες ταχύτητες (υ1 = υ2  ω1r1 = ω2r2) και έτσι θα σταματήσουν να τρίβονται μεταξύ τους (Τ = 0).
Για κάθε δίσκο ο θεμελιώδης νόμος της στροφικής κίνησης (Στ = ΔLt) παίρνει τη μορφή:
                                 r1 = I11 – ω0)/Δt,   για τον δίσκο 1, και
                                  Τr2 = I22 – 0)/Δt,     για το δίσκο 2
Διαιρούμε:                 
                                  - r1/r2 = [I11 – ω0)]/I2ω2
Από την ισότητα των ταχυτήτων προκύπτει ότι ω2 = ω1r1/r2 και αν θέσουμε αυτή την τιμή του ω2 στην παραπάνω σχέση, θα βρούμε τελικά:
                                      ω1 = (Ι1ω0)/[Ι1 + (r1/r2)2I2]

Παρασκευή 27 Απριλίου 2018

Το παράδοξο της συνολικής στροφορμής δύο δίσκων


 Ένας μαθητής, μου έστειλε το παρακάτω πρόβλημα που τους έδωσε ο καθηγητής τους:

«Οι δύο οριζόντιοι κυκλικοί δίσκοι 1 και 2 μπορούν να περιστρέφονται, ο καθένας, γύρω από ακλόνητο κατακόρυφο άξονα κάθετο στην επιφάνειά τους, που διέρχεται από το κέντρο τους, χωρίς τριβές. Οι ροπές αδράνειάς τους ως προς τον άξονα περιστροφής τους είναι Ι1 και Ι2, αντίστοιχα, και οι ακτίνες τους r1 και r2 .

Αρχικά ο δίσκος 1 περιστρέφεται με σταθερή γωνιακή ταχύτητα ω0 , ενώ ο 2 είναι ακίνητος. Χωρίς να αλλάξουμε τον προσανατολισμό των αξόνων τους, πλησιάζουμε τους δύο δίσκους και τους φέρνουμε σε επαφή. Οι περιφέρειες των δύο δίσκων  γλιστρούν αρχικά η μια ως προς την άλλη, αλλά τελικά η ολίσθηση αυτή σταματά, λόγω της μεταξύ τους τριβής. Να βρείτε την τελική γωνιακή ταχύτητα ω1 του δίσκου 1 ».  

Μου γράφει: « Σκέφτηκα πως δεν μπορώ να πάρω Α.Δ.Μ.Ε για το σύστημα, γιατί οι τριβές μεταξύ των δύο δίσκων θα μετατρέψουν μέρος της κινητικής ενέργειας του δίσκου 1 σε θερμότητα.
Γνωρίζω όμως ότι, εάν η συνολική εξωτερική ροπή σε ένα σύστημα είναι μηδέν, η ολική στροφορμή του συστήματος παραμένει σταθερή. Εδώ, το σύστημα των δύο δίσκων είναι μονωμένο. Οι εξωτερικές δυνάμεις είναι τα βάρη των δύο δίσκων και οι δυνάμεις από τα στηρίγματα των αξόνων περιστροφής. Αυτές όμως εξουδετερώνονται αφού το σύστημα δεν μετατοπίζεται κατακόρυφα, άρα εξουδετερώνονται και οι ροπές τους. Οι δυνάμεις των τριβών ανάμεσα στις περιφέρειες των δύο δίσκων είναι εσωτερικές δυνάμεις και η ολική ροπή των εσωτερικών δυνάμεων είναι μηδενική, αφού αυτές απαντούν κατά ζεύγη και έτσι έχουν αντίθετες ροπές. Αποφάσισα λοιπόν να εφαρμόσω Α.Δ.Σ:

                                                          Ι1ω0 = Ι1ω1 – Ι2ω2     (1)

Το (-) γιατί ο δίσκος 2 θα στραφεί δεξιόστροφα. Όταν παύουν να ολισθαίνουν μεταξύ τους, τα σημεία των περιφερειών των δύο δίσκων έχουν ίδια ταχύτητα, δηλ. 
                                           υ1 = υ2  ή ω1r1 = ω2r2  →  ω2 = ω1r1/ r2
οπότε από την (1) έχουμε τελικά:

                                                        ω1 = Ι1ω0/(Ι1  – Ι2r1/r2)


Όμως ο καθηγητής μου, λέει ότι η λύση αυτή είναι λάθος γιατί το σύστημα δεν είναι μονωμένο  καθώς υπάρχει μια εξωτερική ροπή που ενεργεί πάνω του. Δεν καταλαβαίνω ποια είναι η εξωτερική ροπή στη συγκεκριμένη περίπτωση.
Μπορείτε να μου εξηγήσετε σας παρακαλώ;