Η φύση αγαπά την αλήθεια, και η αλήθεια της φύσης διεκδικεί το δικαίωμα να εκτίθεται μόνο σε όσους την ποθούν. Φ. Ντοστογιέφσκι

Εμφάνιση αναρτήσεων με ετικέτα 1.1 Μηχανικές. Εμφάνιση όλων των αναρτήσεων
Εμφάνιση αναρτήσεων με ετικέτα 1.1 Μηχανικές. Εμφάνιση όλων των αναρτήσεων

Πέμπτη 10 Οκτωβρίου 2013

  • Σύστημα “οριζόντιο ελατήριο – Μάζα” και ανελαστική κρούση

                     3η:  ΣΥΓΚΡΟΥΣΗ – ΜΕΓΙΣΤΗ ΑΠΟΣΤΑΣΗ                                              
Παρακολουθείστε τη συζήτηση δύο μαθητών στην προσπάθειά τους να λύσουν ένα πρόβλημα φυσικής. Ο ακροατής, εν προκειμένω ο αναγνώστης, έχει τη ευκαιρία να παρακολουθήσει και τις σκέψεις των μαθητών που δεν μπορούν να καταγραφούν σε μια επίσημη λύσηΝα γνωρίσει δηλαδή πώς αντιπαρέρχονται μια λάθος σκέψη, πώς ο ένας διορθώνει ή συμπληρώνει τον άλλον, τον τρόπο που ανταλλάσσουν τις εμπειρίες τους, τα κόλπα που χρησιμοποιεί ο ένας ή ο άλλος, πώς θα προτιμούσαν να είναι η άσκηση, τι δεν τους αρέσει στην εκφώνηση, πώς ο «δυνατός» μαθητής βοηθάει τον «αδύνατο» κ.λπ.  Έχει ενδιαφέρον. Απολαύστε τους!
  • Στις ανελαστικές κρούσεις, μετά την εφαρμογή Α.Δ.Ο και Α.Δ.Ε, προκύπτει σύστημα εξισώσεων που ανάγονται στη λύση εξίσωσης 2ου βαθμού. Η επίλυση οδηγεί συνήθως σε δύο ζεύγη τιμών από τα οποία το ένα πολλές φορές, εδώ στη Φυσική, πρέπει να αποκλειστεί.
  • Όταν μας ζητούν τη μέγιστη ή ελάχιστη απόσταση μεταξύ δύο κινητών, αφού μελετήσουμε την κίνηση του καθενός καταλήγουμε πάντα στο ίδιο συμπέρασμα: η απόσταση  γίνεται μέγιστη ή ελάχιστη όταν οι ταχύτητες εξισώνονται.

 
Το σώμα Σ2 έχει μάζα m = 1kgr και ισορροπεί πάνω σε λείο οριζόντιο δάπεδο στερεωμένο στο άκρο οριζόντιου ελατηρίου σταθεράς k = 100 N/m, όπως στο σχήμα.  Ένα άλλο σώμα Σ1 μάζας 2m κινούμενο στην προέκταση του άξονα του ελατηρίου προσπίπτει στο πρώτο με ταχύτητα υ1 = 10 m/s. Αμέσως μετά τη σύγκρουση το σύστημα έχει, λόγω απωλειών, κινητική ενέργεια μικρότερη, ίση με τα ¾ της κινητικής ενέργειας πριν την κρούση, ενώ το Σ2 ξεκινά μια α.α.τ.
Α. Να βρείτε τις ταχύτητες των σωμάτων αμέσως μετά την κρούση.
Β. Να εξηγήσετε γιατί κάποια στιγμή η απόσταση των δύο σωμάτων …
Δείτε:

                    ΑΠΩΛΕΙΑ ΕΠΑΦΗΣ «ΑΠΟ ΤΗΝ ΑΝΑΠΟΔΗ»

  • Απώλεια επαφής δύο σωμάτων, που το ένα είναι δεμένο σε ελατήριο θα συμβεί, ο κόσμος να χαλάσει, στη θέση όπου το ελατήριο αποκτά το φυσικό του μήκος. Εκεί, η ΣF σε κάθε σώμα είναι ίση με το βάρος του και η επιτάχυνση ίση με g.

Το σώμα Σ2 του σχήματος είναι δεμένο στο κάτω άκρο  ενός αβαρούς σχοινιού το οποίο διέρχεται από μια  κατακόρυφη οπή του Σ1. Το Σ1 είναι δεμένο στο κάτω άκρο ενός κατακόρυφου ιδανικού ελατηρίου σταθεράς k = 100 N/m. Το πάνω άκρο του ελατηρίου είναι στερεωμένο σε σταθερό σημείο. Τα δύο σώματα έχουν ίσες μάζες m1 = m2 = m = 1 kg και ισορροπούν ευρισκόμενα σε επαφή, χωρίς να είναι κολλημένα μεταξύ τους,  σε μια θέση όπου το ελατήριο είναι συμπιεσμένο κατά Δℓ με τη βοήθεια δύναμης F =100 N που ασκείται στο άλλο άκρο του σχοινιού.
(Στο σχήμα, τα Φ και Ι είναι δυο σημεία από τα οποία διέρχεται το κέντρο του Σ1 όταν, αντίστοιχα, το ελατήριο έχει μηδενική παραμόρφωση και όταν τα δύο σώματα ισορροπούν).
Κάποια στιγμή το σχοινί κόβεται και τα δύο σώματα αρχίζουν να κινούνται προς τα κάτω.
Α.  Εξηγείστε γιατί η επαφή των δύο σωμάτων δεν χάνεται αμέσως, αλλά αφού πρώτα διανύσουν κάποιο διάστημα. Σε ποια θέση χάνεται η επαφή και πόσο είναι αυτό το διάστημα;
Β. Να βρεθεί το πλάτος ταλάντωσης του Σ1 μετά το αποχωρισμό των σωμάτων.
Γ. Σε ποια θέση βρίσκεται το Σ1
Δείτε:

Παρασκευή 4 Οκτωβρίου 2013

Σύστημα “κατακόρυφο ελατήριο - σώμα” και πλαστική κρούση. 5η περίπτωση

  •  (Χρήση βαθμολογημένου άξονα - Επίπεδο δυσκολίας 5, «ψυχραιμία!»)
  • Το συσσωμάτωμα ξεκινά ταλάντωση με αρχική φάση 3π/2  
Στο πάνω άκρο ενός κατακόρυφου ελατηρίου σταθεράς k = 400 Ν/m είναι στερεωμένο και ισορροπεί στη θέση Ι ένα σώμα μάζας Μ = 1 kgr (σχήμα α).       Το κάτω άκρο του ελατηρίου είναι μόνιμα στερεωμένο στο έδαφος.
 Απομακρύνουμε το σώμα κατακόρυφα προς τα κάτω κατά d = 0,1 2 m, ως τη θέση Β (σχήμα β) και το αφήνουμε ελεύθερο χωρίς αρχική ταχύτητα, οπότε ξεκινά να κάνει α.α.τ.
 Ένα δεύτερο σώμα ίδιας μάζας m = 3 kgr  κινείται κατακόρυφα προς τα κάτω και στην πορεία  του συναντάει το ταλαντευόμενο σώμα στη θέση x1 = -0,1 m κάτω από τη θέση ισορροπίας του με ταχύτητα υ0  (σχήμα γ) και συγκρούεται πλαστικά με αυτό.
Μετά την κρούση το συσσωμάτωμα που προέκυψε ξεκινάει, χωρίς αρχική ταχύτητα, μια α.α.τ. (σχήμα δ).
Α. Να υπολογίσετε ….

     Δείτε:

Κυριακή 29 Σεπτεμβρίου 2013

Σύστημα “κατακόρυφο ελατήριο - σώμα” και πλαστική κρούση

  • 4η περίπτωση: (Επίπεδο δυσκολίας 4, «όχι και τόσο φοβερή!»)
  • ΟΠΟΥ Το συσσωμάτωμα ξεκινά ταλάντωση με αρχική φάση π και τετραπλάσια ενέργεια

 
Στο πάνω άκρο ενός κατακόρυφου ελατηρίου σταθεράς k είναι στερεωμένο και ισορροπεί στη θέση Ι ένα σώμα Σ1 μάζας Μ = 1 kgr (σχήμα α). Το κάτω άκρο είναι στερεωμένο στο έδαφος.
Ανεβάζουμε το σώμα ως τη θέση Φ, όπου το ελατήριο έχει μηδενική παραμόρφωση, (σχήμα β) και το αφήνουμε ελεύθερο να πέσει με μηδενική αρχική ταχύτητα. Το σώμα αρχίζει να κάνει α.α.τ. (σχήμα γ).
Ένα δεύτερο σώμα Σ2 μάζας m κινείται κατακόρυφα προς τα κάτω και στην πορεία  του συναντάει το Σ1 στην κάτω ακραία θέση του με ταχύτητα υ0  (σχήμα δ) και συγκρούεται πλαστικά με αυτό.
Κατά την κρούση μετατρέπεται σε θερμότητα το 50% της κινητικής ενέργειας που είχε το σύστημα αμέσως πριν την κρούση.
Μετά την κρούση (που θεωρούμε ότι συμβαίνει τη στιγμή t=0) το συσσωμάτωμα που προέκυψε ξεκινάει μια α.α.τ. με γωνιακή συχνότητα ω = 10 r/s και ενέργεια ταλάντωσης τετραπλάσια της αντίστοιχης του Σ1 πριν την κρούση.

Να υπολογίσετε: ....


Παρασκευή 20 Σεπτεμβρίου 2013

Απλή αρμονική ταλάντωση συστήματος "ιδανικού κατακόρυφου ελατηρίου - μάζας" σε πεδίο βαρύτητας

   Το παρακάτω άρθρο, είναι η συνέχεια της ανάρτησης  "το πρότυπο του απλού αρμονικού ταλαντωτή". Είχε δημοσιευτεί πέρσι τον Αύγουστο. Το ξαναδίνω αναθεωρημένο στην κυκλοφορία σε τέσσερα μέρη και εμπλουτισμένο με δύο σχετικές ασκήσεις. 
  • Το πρώτο μέρος είναι αρκετά τυπικό και περιέχει βασικές γνώσεις α.α.τ. 
  • Το δεύτερο περιγράφει πώς δυο καλοί μαθητές μπορούν εύκολα να μπλέξουν "σαν τον Ηρακλή με τις κουβαρίστρες", ακριβώς επειδή είναι καλοί. Ευτυχώς που είναι δύο! 
  • Στο τρίτο μέρος οι συμμαθητές "γεννούν" μια ιδέα που ξεκαθαρίζει τη σχέση μεταξύ των τριών δυναμικών ενεργειών: βαρύτητας, ελαστικότητας και ταλάντωσης. 
  • Στο τέταρτο μέρος γίνεται αναλυτική παρουσίαση δύο σχετικών ασκήσεων.
Το άρθρο διαβάζεται εύκολα και από μαθητές. Απαιτεί, ίσως, λίγο παραπάνω συγκέντρωση, θα ωφεληθούν όμως και κάποια από αυτά ίσως τα βρουν μπροστά τους!
  • ΜΕΡΟΣ 1ο: Τα βασικά (μαζί με μια εφαρμογή)
  • ΜΕΡΟΣ 2ο:  Όπου δυο μαθητές, προσπαθούν να δώσουν απάντηση σε μια απλή αλλά ενδιαφέρουσα ερώτηση. 
  • ΜΕΡΟΣ 3ο: Όπου οι δυο μαθητές κάνουν μια "σημαντική ανακάλυψη" για τη Μηχανική ενέργεια ταλάντωσης συστήματος "κατακόρυφου ελατηρίου – μάζας".
  • ΜΕΡΟΣ 4ο: Όλες οι δυναμικές ενέργειες μαζί. (Δύο ασκήσεις με τη λύση τους)

Πέμπτη 19 Σεπτεμβρίου 2013

Σύστημα “κατακόρυφο ελατήριο - σώμα” και πλαστική κρούση 3η περίπτωση:

  •  (Επίπεδο δυσκολίας 3, +μια απορία!)
  • ΟΠΟΥ Tο συσσωμάτωμα ξεκινά ταλάντωση με αρχική φάση Π/2. (ΤΑΛΑΝΤΩΣΗ ΣΥΣΤΗΜΑΤΟΣ ΕΠΕΙΤΑ ΑΠΟ ΟΛΙΚΗ ΑΠΩΛΕΙΑ ΤΗΣ ΚΙΝΗΤΙΚΗΣ ΤΟΥ ΕΝΕΡΓΕΙΑΣ)
Το σώμα Σ1 μάζας Μ = 1 kgr ισορροπεί στερεωμένο στο κάτω άκρο κατακόρυφου ιδανικού ελατηρίου (σχήμα α). Το τραβάμε προς τα κάτω και κάποια στιγμή το αφήνουμε ελεύθερο χωρίς αρχική ταχύτητα (σχήμα β). Το σώμα τότε ξεκινάει μια απλή αρμονική ταλάντωση (σχήμα γ) με τα εξής χαρακτηριστικά:
1. Ο ελάχιστος χρόνος μετάβασης από τη μία ακραία θέση στην άλλη είναι 0,1π sec.
2. Η πάνω ακραία θέση είναι η Φ, όπου η παραμόρφωση του ελατηρίου είναι μηδέν.
Α. Να βρείτε τη σταθερά k του ελατηρίου και το πλάτος της ταλάντωσης του Σ1.
    Κάποια στιγμή καθώς το σώμα Σ1 διέρχεται από τη θέση ισορροπίας του, προσπίπτει πάνω του και συγκολλιέται με αυτό, ένα άλλο σώμα Σ2 μάζας m που κινείται προς τα πάνω κατακόρυφα στην προέκταση του άξονα του ελατηρίου με ταχύτητα υ0 τέτοια, ώστε το συσσωμάτωμα που δημιουργείται να έχει αμέσως μετά την κρούση ταχύτητα μηδέν.
Β.  Αν η ενέργεια ταλάντωσης του συσσωματώματος  είναι ίση με 64% της αρχικής ενέργειας ταλάντωσης του Σ1, να βρείτε τη μάζα m του Σ2.
Γ. Εξηγείστε γιατί το υπόλοιπο 36% της αρχικής ενέργειας ταλάντωσης του Σ1, δεν .......

  • Ολόκληρη η άσκηση εδώ, και
  • Η Λύση εδώ.

Δευτέρα 16 Σεπτεμβρίου 2013

Διαγράμματα Ut  και  K - t  σε  α.α.τ.  με αρχική φάση. (Μια πραγματική ιστορία)

  • Οι Φυσικοί οφείλουμε να γνωρίζουμε ποια Μαθηματικά διδάσκονται οι μαθητές μας. Έτσι, σε πρώτη ευκαιρία, θα τους ενθαρρύνουμε να τα χρησιμοποιούν στην επεξεργασία θεμάτων Φυσικής. Και οι μαθητές μας θα αντιληφθούν πόσο εύκολο είναι να πορευθούν μέσα στο χώρο της φυσικής έχοντας ένα ισχυρό μαθηματικό υπόβαθρο.

     Συζητούσα με το μαθητή μου τον Αλέξανδρο για τις γραφικές παραστάσεις των U = f(t) και K = f(t) στην α.α.τ. Σκέφτηκα, αρχικά να μην τον μπλέξω με αρχικές φάσεις κι έτσι καταλήξαμε στις σχέσεις U = Eημ2ωt και K = Eσυν2ω t, των οποίων οι γραφικές παραστάσεις αποδίδονται από το διάγραμμα:

    Του είπα να προσέξει στο σχεδιασμό των καμπυλών, ώστε αυτές να τέμνονται ακριβώς στο ύψος Ε/2. Να προσέξει επίσης τη συμμετρία των καμπυλών, απ’ όπου προκύπτει ότι οι ενέργειες  εξισώνονται τις χρονικές στιγμές Τ/8, 3Τ/8, 5Τ/8, 7Τ/8 (4 φορές) στη διάρκεια της 1ης περιόδου.
    Ήρθε και η απορία στο μυαλό του Αλέξανδρου: κι αν έχουμε αρχική φάση π/2;  Φυσικά τότε  U = Eημ2t+π/2) και K = Eσυν2t+ π/2). Προσέξαμε ότι τη στιγμή t= 0 είναι U = E και  Κ= 0, οπότε στο νέο διάγραμμα οι καμπύλες θα είναι αντεστραμμένες:
    Και αν φ0 = π;  Εύκολα προκύπτει ότι ακολουθεί και δεύτερη αντιστροφή των καμπυλών οπότε καταλήγουμε στο 1­ο­ διάγραμμα, όπου φ0 = 0. Όμοια, αν φ0 =3π/2 ακολουθεί άλλη μια περιστροφή ακόμη και καταλήγουμε στο 2ο διάγραμμα, κ.λπ.

    Και ήταν τότε που μου ήρθε η «φαεινή» ιδέα να δώσω στον Αλέξανδρο να σχεδιάσει τις καμπύλες με φ0 = π/6 και να βρει, μάλιστα, τις χρονικές στιγμές όπου U = ...



Τρίτη 10 Σεπτεμβρίου 2013

Σύστημα “κατακόρυφο ελατήριο - σώμα” και πλαστική κρούση 2η περίπτωση

 (Επίπεδο δυσκολίας 2, «η πιο έξυπνη!»)
ΌΠΟΥ Το συσσωμάτωμα ξεκινά ταλάντωση με αρχική φάση μηδέν

  Στο κάτω άκρο ενός κατακόρυφου ελατηρίου σταθεράς k είναι στερεωμένο και ισορροπεί στη θέση Ι ένα σώμα μάζας Μ = 1 kgr (σχήμα α).
 Ανεβάζουμε το σώμα ως τη θέση Φ, όπου το ελατήριο έχει μηδενική παραμόρφωση (σχήμα β) και το αφήνουμε ελεύθερο να πέσει με μηδενική αρχική ταχύτητα. Το σώμα αρχίζει να κάνει α.α.τ.
   Ένα δεύτερο σώμα μάζας m  κινείται κατακόρυφα προς τα πάνω και στην πορεία του συναντάει το ταλαντευόμενο σώμα στην κάτω ακραία θέση του με ταχύτητα υ0  (σχήμα γ) και συγκρούεται πλαστικά με αυτό. Μετά την κρούση (που θεωρούμε ότι συμβαίνει τη στιγμή t=0) το συσσωμάτωμα που προέκυψε ξεκινάει μια α.α.τ. με εξίσωση  ψ = Α΄ημ5t και με ανώτερη θέση τη Φ.
  Να υπολογίσετε: …
  • Κάντε λήψη ολόκληρης της άσκησης από εδώ.
  • Αναλυτική λύση εδώ.


Δευτέρα 2 Σεπτεμβρίου 2013

Σύστημα “κατακόρυφο ελατήριο - σώμα” 1η περίπτωση

  •  (Επίπεδο δυσκολίας 1, η πιο εύκολη!)
  • α.α.τ φορτισμένου σφαιριδίου σε βαρυτικό και ηλεκτρικό πεδίο

Το μεταλλικό σφαιρίδιο του σχήματος έχει θετικό φορτίο q και μάζα m = 0,4 kgr. Το ελατήριο είναι ιδανικό (δηλ., έχει αμελητέα μάζα και υπακούει στο νόμο του Hooke) και έχει σταθερά k = 10 N/m. Το σύστημα βρίσκεται μέσα σε κατακόρυφο ομογενές Η.Π. έντασης τέτοιας ώστε το σώμα να ισορροπεί στη θέση όπου το ελατήριο έχει το φυσικό του μήκος.
  Εκτρέπουμε το σφαιρίδιο από τη θέση ισορροπίας του κατά τη διεύθυνση του άξονα του ελατηρίου και προς τα κάτω κατά d = 0,3m και μετά το αφήνουμε ελεύθερο, χωρίς αρχική  ταχύτητα.
Α. Να αποδειχτεί ότι το σφαιρίδιο θα κάνει α.α.τ. με σταθερά επαναφοράς D = k.
Β. Να υπολογίσετε το πλάτος και τη γωνιακή συχνότητα της α.α.τ.
Γ. Να γραφεί η σχέση της δύναμης ελατηρίου με το χρόνο θεωρώντας t =0 τη στιγμή που αφήνουμε τη σφαίρα.
Δ. Αν τη στιγμή που η σφαίρα περνά από τη θέση ισορροπίας της καταργήσουμε το Η.Π., ποιο θα είναι το πλάτος της νέας ταλάντωσης;


Θεώρησε τις απομακρύνσεις πάνω από τη θέση ισορροπίας θετικές και τις διαστάσεις του σφαιριδίου αμελητέες. Δίνεται g = 10 m/s2.

Μπορείτε να κάνετε λήψη της άσκησης σε PDF εδώ
Αναλυτική Λύση της Άσκησης θα βρείτε εδώ


Τρίτη 25 Δεκεμβρίου 2012

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΚΑΙ ΤΡIΒΗ

Όταν το σύστημα που φαίνεται στο σχήμα βρίσκεται σε ισορροπία, το δεξί ελατήριο  είναι τεντωμένο κατά x1. Ο συντελεστής μέγιστης στατικής τριβής μεταξύ των επιφανειών επαφής των δύο σωμάτων είναι μs, ενώ δεν υπάρχει τριβή μεταξύ του κάτω σώματος και του δαπέδου. Όπως φαίνεται στο σχήμα, οι σταθερές του δεξιού και του αριστερού ελατηρίου είναι k και 3k, αντίστοιχα. Τα σώματα έχουν ίσες μάζες m
Να βρείτε το μέγιστο πλάτος ταλάντωσης του συστήματος  για το οποίο το πάνω σώμα δεν ολισθαίνει ως προς το κάτω.

Δείτε:

Σάββατο 22 Δεκεμβρίου 2012

ΑΞΙΟΠΟΙΩΝΤΑΣ ΤΗ ΣΧΕΣΗ ΤΗΣ ΕΛΑΧΙΣΤΗΣ ΑΚΕΡΑΙΑΣ ΑΝΑΛΟΓΙΑΣ ΣΤΑ ΠΕΡΙΟΔΙΚΑ ΦΑΙΝΟΜΕΝΑ


Ήμουν μαθητής  στην πρώτη τάξη Λυκείου όταν ο καθηγητής μας της Άλγεβρας  μας έθεσε το ερώτημα:
«Δύο κινητά εκτελούν ομαλή κυκλική κίνηση κινούμενα δεξιόστροφα πάνω στην ίδια περιφέρεια κύκλου με περιόδους Τ1 = 2,5 min και T2 =  6 min, αντίστοιχα. Σε πόσο χρόνο μετά από μια συνάντησή τους θα ξανασυναντηθούν στο ίδιο σημείο;»
 Θυμάμαι ότι δυσκολευτήκαμε.  Ήταν η πρώτη φορά που ανακαλύπταμε τη χρησιμότητα της ελάχιστης ακέραιας αναλογίας. Έχω, λοιπόν, ένα απωθημένο, με βάση το οποίο διαμορφώθηκε το ερώτημα Γ στην άσκηση που ακολουθεί.

Τα δύο σώματα Σ1 και Σ2 με μάζες M = 6 kgr και m = 1 kgr, αντίστοιχα, ισορροπούν δεμένα  μεταξύ τους με ένα τεντωμένο κατακόρυφο αβαρές σχοινί. Το καθένα είναι στερεωμένο στο άκρο ενός ελατηρίου, όπως στο σχήμα. Τα δύο ελατήρια έχουν σταθερές σκληρότητας k1 = 150 N/m και k2 = 100 N/m,  και οι θέσεις ισορροπίας των κέντρων των δύο σωμάτων βρίσκονται πάνω στην ίδια κατακόρυφο. Το πάνω ελατήριο είναι παραμορφωμένο κατά 0,4 m.

Α. Να βρείτε την παραμόρφωση Δℓ1 του κάτω ελατηρίου.  
B. Κάποια στιγμή (t = 0) κόβουμε το σχοινί και τα δύο σώματα αρχίζουν να εκτελούν α.α.τ. Πόση είναι η ενέργεια ταλάντωσης κάθε συστήματος «ελατήριο – μάζα»;
Γ.  Ποια χρονική στιγμή, μετά την έναρξη της ταλάντωσης, θα βρεθούν τα κέντρα των δύο σωμάτων για πρώτη φορά στην ελάχιστη μεταξύ τους απόσταση;
Δ. Με ποιο ...

Δείτε:

Πέμπτη 15 Νοεμβρίου 2012

Ο Ρυθμός μεταβολής της κινητικής ενέργειας στην α.α.τ. και η μέγιστη τιμή του


Ο ρυθμός μεταβολής της κινητικής ενέργειας είναι ένας δυσπρόσιτος για τους μαθητές Λυκείου ρυθμός, γιατί δεν αναφέρεται στη θεωρία των βιβλίων τους της Φυσικής.

Μόνο σε ένα σημείο, αλλά στις ασκήσεις, στη σελίδα 223 άσκ. 5.60 του βιβλίου θετικής κατεύθυνσης της Β Λυκείου, ζητείται ο υπολογισμός του. Στους “παλαιούς” συναδέλφους έχει στοιχειώσει ένα αντίστοιχο ερώτημα που είχε τεθεί στις Πανελλήνιες του 2002 στην τάξη Β.

Στη θεωρία του βιβλίου της Γ, στο 4ο κεφάλαιο σελ.128, θίγεται ο ρυθμός παραγωγής έργου δύναμης dW/dt, ο οποίος μάλιστα αναφέρεται και ως ισχύς P της δύναμης.

Θα μπορούσε λοιπόν στις Πανελλήνιες να ζητηθεί αντί ο ρυθμός μεταβολής της κινητικής ενέργειας, ο ρυθμός παραγωγής έργου της δύναμης επαναφοράς στην α.α.τ.


Δευτέρα 12 Νοεμβρίου 2012

Μέγιστο κι ελάχιστο μέτρο της Fελ στον απλό αρμονικό ταλαντωτή ελατήριο – σώμα

Κι άλλες συναρτήσεις και διαγράμματα Fελt σε απλό αρμονικό ταλαντωτή με κατακόρυφο ελατήριο

Να γίνει σε κάθε περίπτωση, με ελεύθερη εκτίμηση, το διάγραμμα Fελt.
Θεωρείστε φ0 = 0 και την προς τα πάνω κατεύθυνση θετική.
 
 περίπτωση.

Δίνονται:
k = 125 N/m,  A = 0,4 m,  m = 5 kgr,  g = 10 m/s2

ΕΛΕΥΘΕΡΗ  ΠΤΩΣΗ – ΠΛΑΣΤΙΚΗ ΚΡΟΥΣΗ – Α.Α.Τ. ΚΑΙ Η ΣΥΝΑΡΤΗΣΗ Fελ t



Δίνονται: k = 160 N/mM = 9 kgrm = 1 kgrh = 15/16 m και g = 10 m/s2
Α. Με αρχή χρόνων τη στιγμή της δημιουργίας του συσσωματώματος να εξάγετε τη σχέση απομάκρυνσης - χρόνου της α.α.τ. που θα εκτελέσει το συσσωμάτωμα.
Β. Να εξάγετε τις σχέσεις Fελ – απομάκρυνσης και Fελ – χρόνου και να τις παραστήσετε γραφικά σε κατάλληλα αριθμημένο σύστημα αξόνων.
Γ. Πόση είναι η δυναμική ενέργεια του ελατηρίου τη στιγμή που η δυναμική ενέργεια της ταλάντωσης είναι μηδέν;

ΕΛΕΥΘΕΡΗ  ΠΤΩΣΗ – ΠΛΑΣΤΙΚΗ ΚΡΟΥΣΗ – Α.Α.Τ., ΕΞΙΣΩΣΗ xtΕΝΑ ΠΗΛΙΚΟ ΚΙ ΕΝΑΣ ΡΥΘΜΟΣ


 Το σώμα Σ2 αφήνεται από ύψος h και συγκρούεται κεντρικά και πλαστικά με το σώμα Σ1, που ηρεμεί στερεωμένο στο πάνω άκρο κατακόρυφου ελατηρίου.


Δίνονται: k = 100 N/mM = 3 kgrm = 1 kgrh = 0,6 m και g = 10 m/s2.

Α. Να δείξετε ότι το συσσωμάτωμα θα κάνει α.α.τ. και με αρχή χρόνων τη στιγμή της δημιουργίας του να εξάγετε τη σχέση απομάκρυνσης - χρόνου της α.α.τ. που θα εκτελέσει.
Β. Να προσδιορίσετε την τιμή του πηλίκου: 
Γ. Σε ποια θέση και σε πόσο χρόνο από τη στιγμή της κρούσης το συσσωμάτωμα θα σταματήσει (στιγμιαία) για πρώτη φορά;
Δ. Πόσος είναι ο ρυθμός μεταβολής της ορμής του σώματος στην παραπάνω θέση;

Για την ταλάντωση του συσσωματώματος να θεωρήσετε θετική φορά την προς τα πάνω και στο πηλίκο να θέσετε τις αλγεβρικές τιμές των δυνάμεων.





Παρασκευή 2 Νοεμβρίου 2012

Η ΤΑΣΗ ΝΗΜΑΤΟΣ ΚΑΙ ΤΟ ΦΥΣΙΚΟ ΜΗΚΟΣ ΕΛΑΤΗΡΙΟΥ  -2ο


2.  ΣΩΜΑ ΔΕΜΕΝΟ ΜΕ ΣΧΟΙΝΙ ΣΕ ΣΥΣΤΗΜΑ ΚΑΤΑΚΟΡΥΦΟ ΕΛΑΤΗΡΙΟ – ΣΩΜΑ

Εδώ, στο κάτω άκρο του ελατηρίου έχουμε προσαρμόσει ένα σώμα μάζας Μ από το οποίο κρέμεται με σχοινί ένα άλλο σώμα μάζας m. Το σύστημα αρχικά ηρεμεί με το ελατήριο παραμορφωμένο κατά Δℓ.

Απομακρύνουμε το σύστημα των σωμάτων κατά d προς τα κάτω και το αφήνουμε ελεύθερο. Πόση είναι η μέγιστη δυνατή τιμή του d για την οποία το σχοινί διατηρείται διαρκώς τεντωμένο; 

Θεωρείστε το σχοινί αβαρές και μη εκτατό.

Η λύση εδώ.

Η ΤΑΣΗ ΝΗΜΑΤΟΣ ΚΑΙ ΤΟ ΦΥΣΙΚΟ ΜΗΚΟΣ ΕΛΑΤΗΡΙΟΥ -1ο


1.  ΣΩΜΑ ΔΕΜΕΝΟ ΜΕ ΣΧΟΙΝΙ ΣΤΟ ΑΚΡΟ ΚΑΤΑΚΟΡΥΦΟΥ ΕΛΑΤΗΡΙΟΥ

Στο σχήμα φαίνεται ένα κατακόρυφο αβαρές ελατήριο στερεωμένο με το ένα άκρο του σε μια οροφή. Αρχικά το ελατήριο έχει το φυσικό του μήκος, όταν όμως με τη βοήθεια ενός σχοινιού κρεμάσουμε στο κάτω άκρο του ένα σώμα μάζας m και το αφήνουμε σιγά - σιγά να ισορροπήσει στη θέση Θ.Ι του σχήματος, το μήκος του θα αυξηθεί κατά Δℓ.
Απομακρύνουμε το σώμα κατά d προς τα κάτω και το αφήνουμε ελεύθερο. Πόση είναι η μέγιστη δυνατή τιμή του d για την οποία το σχοινί διατηρείται διαρκώς τεντωμένο; Θεωρείστε το σχοινί αβαρές και μη εκτατό.

Σκεφτείτε, προσπαθήστε κι ύστερα …

Σάββατο 20 Οκτωβρίου 2012

Ευθύγραμμη ομαλά μεταβαλλόμενη κίνηση αντιμέτωπη με αρμονικά μεταβαλλόμενη κίνηση



Στο χώρο, όπου βρίσκονται τα σώματα του σχήματος, υπάρχει ομογενές ηλεκτρικό πεδίο έντασης Ε. Το σφαιρίδιο Σ2 είναι ηλεκτρικά φορτισμένο με φορτίο q και αρχικά το συγκρατούμε ακίνητο σε απόσταση ℓ από το αφόρτιστο σώμα Σ1 που ισορροπεί στερεωμένο στο αριστερό άκρο ενός οριζόντιου ελατηρίου όπως στο σχήμα. Το οριζόντιο δάπεδο είναι λείο.
Μετακινούμε το Σ1 προς τα δεξιά κατά x1 = 0,2 m και το αφήνουμε ελεύθερο. Την ίδια στιγμή αφήνουμε ελεύθερο και το Σ2.

Α. Να υπολογίσετε την απόσταση ℓ ώστε η συνάντηση των σωμάτων να γίνει στη θέση ισορροπίας του Σ1.

Β. Αν δίνεται ότι μετά την κρούση τα δύο σώματα ξαναγυρίζουν στις αρχικές τους θέσεις με μηδενικές ταχύτητες, να υπολογίσετε την m2.

Γ. Να εξηγήσετε ότι η κρούση των σωμάτων είναι  ελαστική και να δείξετε ότι θα φτάσουν στις αρχικές τους θέσεις ταυτόχρονα.

Δ. Αν σε ένα ιδανικό κύκλωμα LC ...

Δείτε: