Η φύση αγαπά την αλήθεια, και η αλήθεια της φύσης διεκδικεί το δικαίωμα να εκτίθεται μόνο σε όσους την ποθούν. Φ. Ντοστογιέφσκι

Κυριακή 29 Σεπτεμβρίου 2013

Σύστημα “κατακόρυφο ελατήριο - σώμα” και πλαστική κρούση

  • 4η περίπτωση: (Επίπεδο δυσκολίας 4, «όχι και τόσο φοβερή!»)
  • ΟΠΟΥ Το συσσωμάτωμα ξεκινά ταλάντωση με αρχική φάση π και τετραπλάσια ενέργεια

 
Στο πάνω άκρο ενός κατακόρυφου ελατηρίου σταθεράς k είναι στερεωμένο και ισορροπεί στη θέση Ι ένα σώμα Σ1 μάζας Μ = 1 kgr (σχήμα α). Το κάτω άκρο είναι στερεωμένο στο έδαφος.
Ανεβάζουμε το σώμα ως τη θέση Φ, όπου το ελατήριο έχει μηδενική παραμόρφωση, (σχήμα β) και το αφήνουμε ελεύθερο να πέσει με μηδενική αρχική ταχύτητα. Το σώμα αρχίζει να κάνει α.α.τ. (σχήμα γ).
Ένα δεύτερο σώμα Σ2 μάζας m κινείται κατακόρυφα προς τα κάτω και στην πορεία  του συναντάει το Σ1 στην κάτω ακραία θέση του με ταχύτητα υ0  (σχήμα δ) και συγκρούεται πλαστικά με αυτό.
Κατά την κρούση μετατρέπεται σε θερμότητα το 50% της κινητικής ενέργειας που είχε το σύστημα αμέσως πριν την κρούση.
Μετά την κρούση (που θεωρούμε ότι συμβαίνει τη στιγμή t=0) το συσσωμάτωμα που προέκυψε ξεκινάει μια α.α.τ. με γωνιακή συχνότητα ω = 10 r/s και ενέργεια ταλάντωσης τετραπλάσια της αντίστοιχης του Σ1 πριν την κρούση.

Να υπολογίσετε: ....


Παρασκευή 20 Σεπτεμβρίου 2013

Απλή αρμονική ταλάντωση συστήματος "ιδανικού κατακόρυφου ελατηρίου - μάζας" σε πεδίο βαρύτητας

   Το παρακάτω άρθρο, είναι η συνέχεια της ανάρτησης  "το πρότυπο του απλού αρμονικού ταλαντωτή". Είχε δημοσιευτεί πέρσι τον Αύγουστο. Το ξαναδίνω αναθεωρημένο στην κυκλοφορία σε τέσσερα μέρη και εμπλουτισμένο με δύο σχετικές ασκήσεις. 
  • Το πρώτο μέρος είναι αρκετά τυπικό και περιέχει βασικές γνώσεις α.α.τ. 
  • Το δεύτερο περιγράφει πώς δυο καλοί μαθητές μπορούν εύκολα να μπλέξουν "σαν τον Ηρακλή με τις κουβαρίστρες", ακριβώς επειδή είναι καλοί. Ευτυχώς που είναι δύο! 
  • Στο τρίτο μέρος οι συμμαθητές "γεννούν" μια ιδέα που ξεκαθαρίζει τη σχέση μεταξύ των τριών δυναμικών ενεργειών: βαρύτητας, ελαστικότητας και ταλάντωσης. 
  • Στο τέταρτο μέρος γίνεται αναλυτική παρουσίαση δύο σχετικών ασκήσεων.
Το άρθρο διαβάζεται εύκολα και από μαθητές. Απαιτεί, ίσως, λίγο παραπάνω συγκέντρωση, θα ωφεληθούν όμως και κάποια από αυτά ίσως τα βρουν μπροστά τους!
  • ΜΕΡΟΣ 1ο: Τα βασικά (μαζί με μια εφαρμογή)
  • ΜΕΡΟΣ 2ο:  Όπου δυο μαθητές, προσπαθούν να δώσουν απάντηση σε μια απλή αλλά ενδιαφέρουσα ερώτηση. 
  • ΜΕΡΟΣ 3ο: Όπου οι δυο μαθητές κάνουν μια "σημαντική ανακάλυψη" για τη Μηχανική ενέργεια ταλάντωσης συστήματος "κατακόρυφου ελατηρίου – μάζας".
  • ΜΕΡΟΣ 4ο: Όλες οι δυναμικές ενέργειες μαζί. (Δύο ασκήσεις με τη λύση τους)

Πέμπτη 19 Σεπτεμβρίου 2013

Σύστημα “κατακόρυφο ελατήριο - σώμα” και πλαστική κρούση 3η περίπτωση:

  •  (Επίπεδο δυσκολίας 3, +μια απορία!)
  • ΟΠΟΥ Tο συσσωμάτωμα ξεκινά ταλάντωση με αρχική φάση Π/2. (ΤΑΛΑΝΤΩΣΗ ΣΥΣΤΗΜΑΤΟΣ ΕΠΕΙΤΑ ΑΠΟ ΟΛΙΚΗ ΑΠΩΛΕΙΑ ΤΗΣ ΚΙΝΗΤΙΚΗΣ ΤΟΥ ΕΝΕΡΓΕΙΑΣ)
Το σώμα Σ1 μάζας Μ = 1 kgr ισορροπεί στερεωμένο στο κάτω άκρο κατακόρυφου ιδανικού ελατηρίου (σχήμα α). Το τραβάμε προς τα κάτω και κάποια στιγμή το αφήνουμε ελεύθερο χωρίς αρχική ταχύτητα (σχήμα β). Το σώμα τότε ξεκινάει μια απλή αρμονική ταλάντωση (σχήμα γ) με τα εξής χαρακτηριστικά:
1. Ο ελάχιστος χρόνος μετάβασης από τη μία ακραία θέση στην άλλη είναι 0,1π sec.
2. Η πάνω ακραία θέση είναι η Φ, όπου η παραμόρφωση του ελατηρίου είναι μηδέν.
Α. Να βρείτε τη σταθερά k του ελατηρίου και το πλάτος της ταλάντωσης του Σ1.
    Κάποια στιγμή καθώς το σώμα Σ1 διέρχεται από τη θέση ισορροπίας του, προσπίπτει πάνω του και συγκολλιέται με αυτό, ένα άλλο σώμα Σ2 μάζας m που κινείται προς τα πάνω κατακόρυφα στην προέκταση του άξονα του ελατηρίου με ταχύτητα υ0 τέτοια, ώστε το συσσωμάτωμα που δημιουργείται να έχει αμέσως μετά την κρούση ταχύτητα μηδέν.
Β.  Αν η ενέργεια ταλάντωσης του συσσωματώματος  είναι ίση με 64% της αρχικής ενέργειας ταλάντωσης του Σ1, να βρείτε τη μάζα m του Σ2.
Γ. Εξηγείστε γιατί το υπόλοιπο 36% της αρχικής ενέργειας ταλάντωσης του Σ1, δεν .......

  • Ολόκληρη η άσκηση εδώ, και
  • Η Λύση εδώ.

Δευτέρα 16 Σεπτεμβρίου 2013

Διαγράμματα Ut  και  K - t  σε  α.α.τ.  με αρχική φάση. (Μια πραγματική ιστορία)

  • Οι Φυσικοί οφείλουμε να γνωρίζουμε ποια Μαθηματικά διδάσκονται οι μαθητές μας. Έτσι, σε πρώτη ευκαιρία, θα τους ενθαρρύνουμε να τα χρησιμοποιούν στην επεξεργασία θεμάτων Φυσικής. Και οι μαθητές μας θα αντιληφθούν πόσο εύκολο είναι να πορευθούν μέσα στο χώρο της φυσικής έχοντας ένα ισχυρό μαθηματικό υπόβαθρο.

     Συζητούσα με το μαθητή μου τον Αλέξανδρο για τις γραφικές παραστάσεις των U = f(t) και K = f(t) στην α.α.τ. Σκέφτηκα, αρχικά να μην τον μπλέξω με αρχικές φάσεις κι έτσι καταλήξαμε στις σχέσεις U = Eημ2ωt και K = Eσυν2ω t, των οποίων οι γραφικές παραστάσεις αποδίδονται από το διάγραμμα:

    Του είπα να προσέξει στο σχεδιασμό των καμπυλών, ώστε αυτές να τέμνονται ακριβώς στο ύψος Ε/2. Να προσέξει επίσης τη συμμετρία των καμπυλών, απ’ όπου προκύπτει ότι οι ενέργειες  εξισώνονται τις χρονικές στιγμές Τ/8, 3Τ/8, 5Τ/8, 7Τ/8 (4 φορές) στη διάρκεια της 1ης περιόδου.
    Ήρθε και η απορία στο μυαλό του Αλέξανδρου: κι αν έχουμε αρχική φάση π/2;  Φυσικά τότε  U = Eημ2t+π/2) και K = Eσυν2t+ π/2). Προσέξαμε ότι τη στιγμή t= 0 είναι U = E και  Κ= 0, οπότε στο νέο διάγραμμα οι καμπύλες θα είναι αντεστραμμένες:
    Και αν φ0 = π;  Εύκολα προκύπτει ότι ακολουθεί και δεύτερη αντιστροφή των καμπυλών οπότε καταλήγουμε στο 1­ο­ διάγραμμα, όπου φ0 = 0. Όμοια, αν φ0 =3π/2 ακολουθεί άλλη μια περιστροφή ακόμη και καταλήγουμε στο 2ο διάγραμμα, κ.λπ.

    Και ήταν τότε που μου ήρθε η «φαεινή» ιδέα να δώσω στον Αλέξανδρο να σχεδιάσει τις καμπύλες με φ0 = π/6 και να βρει, μάλιστα, τις χρονικές στιγμές όπου U = ...



Τρίτη 10 Σεπτεμβρίου 2013

Σύστημα “κατακόρυφο ελατήριο - σώμα” και πλαστική κρούση 2η περίπτωση

 (Επίπεδο δυσκολίας 2, «η πιο έξυπνη!»)
ΌΠΟΥ Το συσσωμάτωμα ξεκινά ταλάντωση με αρχική φάση μηδέν

  Στο κάτω άκρο ενός κατακόρυφου ελατηρίου σταθεράς k είναι στερεωμένο και ισορροπεί στη θέση Ι ένα σώμα μάζας Μ = 1 kgr (σχήμα α).
 Ανεβάζουμε το σώμα ως τη θέση Φ, όπου το ελατήριο έχει μηδενική παραμόρφωση (σχήμα β) και το αφήνουμε ελεύθερο να πέσει με μηδενική αρχική ταχύτητα. Το σώμα αρχίζει να κάνει α.α.τ.
   Ένα δεύτερο σώμα μάζας m  κινείται κατακόρυφα προς τα πάνω και στην πορεία του συναντάει το ταλαντευόμενο σώμα στην κάτω ακραία θέση του με ταχύτητα υ0  (σχήμα γ) και συγκρούεται πλαστικά με αυτό. Μετά την κρούση (που θεωρούμε ότι συμβαίνει τη στιγμή t=0) το συσσωμάτωμα που προέκυψε ξεκινάει μια α.α.τ. με εξίσωση  ψ = Α΄ημ5t και με ανώτερη θέση τη Φ.
  Να υπολογίσετε: …
  • Κάντε λήψη ολόκληρης της άσκησης από εδώ.
  • Αναλυτική λύση εδώ.


Τρίτη 3 Σεπτεμβρίου 2013

Ο Feynman συνέχισε:
  • Στην πραγματικότητα αυτό που κάνουμε είναι να ασχολούμαστε σε υπερβολικό βαθμό μ’ ένα συγκεκριμένο θέμα που δείχνει απόλυτα φυσιολογικό και συνηθισμένο. Οι άνθρωποι αναμφίβολα έχουν φαντασία, μόνο που δεν τη χρησιμοποιούν τόσο εντατικά. Όλοι μας διαθέτουμε δημιουργικότητα, αλλά οι επιστήμονες κάνουν χρήση της σε μεγαλύτερο βαθμό. Αυτό που δεν είναι συνηθισμένο είναι να τη χρησιμοποιείς με τόση ένταση ώστε όλη εκείνη η εμπειρία που συσσωρεύεται με τα χρόνια να αφορά στο ίδιο πάντα περιορισμένο θέμα.

Απόσπασμα από το “ουράνιο τόξο του Φάυνμαν” (Feynmans Rainbow) του Leonard Mlodinow, σε μετάφραση Δημοσθένη Κοντού εκδόσεις Αλεξάνδρεια.

ΚΑΛΗ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ!
  Αγαπητοί μαθητές και συνάδελφοι εύχομαι με καινούργια διάθεση και ανανεωμένες δυνάμεις να ξεκινήσετε άλλη μια φορά τη δημιουργική σας προσπάθεια για να κάνετε ακόμα φωτεινότερη μέσα σας τη σφαίρα της γνώσης, εσείς οι μαθητές, και να βελτιώσετε ως τα όρια της σοφίας την εμπειρία σας, εσείς οι συνάδελφοι.
  Είναι σίγουρο ότι από αυτήν εδώ τη γωνιά θα προσπαθήσουμε να χρησιμοποιήσουμε τη δημιουργικότητα και τη φαντασία μας πέρα από το συνηθισμένο, ώστε η συσσωρευμένη με τα χρόνια εμπειρία μας να έχει να προσθέσει κάτι νέο στα ίδια πάντα περιορισμένα θέματα.
                                                                                                               Τάσος Τζανόπουλος

Δευτέρα 2 Σεπτεμβρίου 2013

Σύστημα “κατακόρυφο ελατήριο - σώμα” 1η περίπτωση

  •  (Επίπεδο δυσκολίας 1, η πιο εύκολη!)
  • α.α.τ φορτισμένου σφαιριδίου σε βαρυτικό και ηλεκτρικό πεδίο

Το μεταλλικό σφαιρίδιο του σχήματος έχει θετικό φορτίο q και μάζα m = 0,4 kgr. Το ελατήριο είναι ιδανικό (δηλ., έχει αμελητέα μάζα και υπακούει στο νόμο του Hooke) και έχει σταθερά k = 10 N/m. Το σύστημα βρίσκεται μέσα σε κατακόρυφο ομογενές Η.Π. έντασης τέτοιας ώστε το σώμα να ισορροπεί στη θέση όπου το ελατήριο έχει το φυσικό του μήκος.
  Εκτρέπουμε το σφαιρίδιο από τη θέση ισορροπίας του κατά τη διεύθυνση του άξονα του ελατηρίου και προς τα κάτω κατά d = 0,3m και μετά το αφήνουμε ελεύθερο, χωρίς αρχική  ταχύτητα.
Α. Να αποδειχτεί ότι το σφαιρίδιο θα κάνει α.α.τ. με σταθερά επαναφοράς D = k.
Β. Να υπολογίσετε το πλάτος και τη γωνιακή συχνότητα της α.α.τ.
Γ. Να γραφεί η σχέση της δύναμης ελατηρίου με το χρόνο θεωρώντας t =0 τη στιγμή που αφήνουμε τη σφαίρα.
Δ. Αν τη στιγμή που η σφαίρα περνά από τη θέση ισορροπίας της καταργήσουμε το Η.Π., ποιο θα είναι το πλάτος της νέας ταλάντωσης;


Θεώρησε τις απομακρύνσεις πάνω από τη θέση ισορροπίας θετικές και τις διαστάσεις του σφαιριδίου αμελητέες. Δίνεται g = 10 m/s2.

Μπορείτε να κάνετε λήψη της άσκησης σε PDF εδώ
Αναλυτική Λύση της Άσκησης θα βρείτε εδώ


Πέμπτη 13 Ιουνίου 2013

Επαναληπτικές Πανελλήνιες Εξετάσεις 2013 στη Φυσική κατεύθυνσης







Τα θέματα σιγά-σιγά δυσκολεύουν. Γίνονται θέματα για πρωτοετείς φοιτητές Φυσικού τμήματος που στο κάτω – κάτω δε θα χάσουν το μάθημα αν γράψουν >5. Στις Πανελλήνιες όμως  η βάση  έχει μεγάλο κόστος στους υποψηφίους. Η ιδιομορφία στις φετινές επαναληπτικές ήταν πως απαιτούσαν από τους υποψηφίους καλό χειρισμό των βασικών γνώσεών τους στα μαθηματικά (απλοποιήσεις, παραγοντοποιήσεις, συστήματα εξισώσεων, γεωμετρία, τριγωνομετρία) … ακόμη και από το πρώτο ερώτημα του Θέματος Α.  

Ξεχωρίζουν τα θέματα Β.2. και Β.3. Παρόμοια ερώτηση με του Β.2, μαζί με αναλυτική απάντηση, (για να βλογάμε τα γένια μας) έχουμε αναρτήσει εδώ (4η ερώτηση).

Το Θέμα Γ ήταν κατά τη γνώμη μου το δυσκολότερο. Ώσπου να απαγκιστρωθεί ο μαθητής από την εικόνα που του πετάει η πρώτη φράση: « Σε κινούμενο τρένο … υπάρχει ηχητική πηγή που εκπέμπει ήχο συχνότητας fs … Τρένο 2  κινείται … αντίθετα και τη στιγμή t = 0 απέχει από το τρένο 1 απόσταση d » και να αποφασίσει πως δε θα βγάλει άκρη αν δε θεωρήσει ότι και ο ήχος αρχίζει να εκπέμπεται τη χρονική στιγμή t = 0, θα έχασε αναμφίβολα πολύτιμο χρόνο. Χάθηκε μια διευκρίνιση έστω και εκ των υστέρων; Γιατί θυμίζει αυτό ασάφειες σε προβλήματα που δίνουν σε φοιτητές; Και καλά οι φοιτητές μπορεί ή επιβάλλεται να υφίστανται τις συνέπειες του κανόνα "τα ευκόλως εννοούμενα παραλείπονται". Τα αγχωμένα σχολιαρόπαιδα όμως;  Ρε παιδιά τα θέματα είναι Πανελλαδικής και διαχρονικής εμβέλειας, δεν είναι θέματα για ένα τμήμα 50 -100 μαθητών! Κι από την άλλη μεριά, είναι σωστό το τελευταίο μάθημα που διδάσκουμε να αποτελεί σχεδόν ολόκληρο θέμα; Θα βλέπουν οι μελλοντικοί υποψήφιοι το θέμα Γ και θα τρέμει η καρδούλα τους. Κι εμείς θα τρέχουμε να ολοκληρώσουμε την ύλη πριν την καθαρο-Δευτέρα μην τυχόν και μπούμε σε άδεια τάξη όταν έλθει η στιγμή του Dopper... Κι όταν πάμε να διδάξουμε Doppler οι μαθητές μας θα παθαίνουν Παβλοφικό συνειρμο-ταράκουλο.
Εδώ δυσκολεύονται να κατανοήσουν την απάντηση στο ερώτημα 5.21 του σχολικού, θα μπορέσουν να απαντήσουν σε ένα Doppleriko ερώτημα όπως στο Γ.3;
Αυτή είναι η γνώμη μου ακόμη κι αν εδώ και εδώ έχω στο παρελθόν ασχοληθεί με θέμα παρόμοιο με το Γ.3.

Το Θέμα Δ, ευτυχώς, κλασσικό πρόβλημα Πανελλαδικών. Συγγενές με τα αντίστοιχα προβλήματα του σχολικού βιβλίου. Η ιδέα με τα δύο ομογενή τμήματα αρκετά καλή.

Κι επειδή κάθε χρόνο ψάχνουμε για πρωτότυπα θέματα, μια συμβουλή στους υποψήφιους της νέας χρονιάς αλλά και στους συναδέλφους: μην ασχοληθείτε φέτος με ασκήσεις στερεών με τρύπες και με Doppler ηχο-τρενο-συναντήσεις!



   ΟΙ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΗΜΕΡΗΣΙΩΝ


   ΟΙ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΕΣΠΕΡΙΝΩΝ


  • Σχόλια συναδέλφων στο YLIKONET (a)    kai (b)


Δευτέρα 20 Μαΐου 2013

S.O.S  ΘΕΜΑΤΑ ΣΤΟ ΣΤΕΡΕΟ - ΜΕΡΟΣ 2ο

Δύο στερεά σώματα περιστρέφονται ...

9.  Δύο στερεά σώματα περιστρέφονται γύρω από σταθερούς άξονες ως προς τους οποίους έχουν ίσες στροφορμές  L1  και  L2,  ενώ οι ροπές αδράνειάς τους συνδέονται με τη σχέση: Ι2 = 2Ι1.
Α.  Με ποια από τις παρακάτω σχέσεις συνδέονται οι κινητικές τους ενέργειες;
    α.  Κ2 = Κ1,       β.  Κ2 = 2 Κ1,       γ. Κ1 = 2 Κ2,       δ.  Κ2 = 4 Κ1
Β. Αιτιολογείστε την απάντησή σας.

Μια ομογενής ράβδος μπορεί να περιστρέφεται... 


10. Μια ομογενής ράβδος μπορεί να περιστρέφεται σε κατακόρυφο επίπεδο γύρω από οριζόντιο άξονα, ο οποίος διέρχεται από το πάνω άκρο της, χωρίς τριβές.
Αρχικά, η ράβδος ισορροπεί στην κατακόρυφη θέση.  Ασκούμε στο άκρο Α της ράβδου δύναμη σταθερού μέτρου F η οποία διατηρείται διαρκώς κάθετη στη ράβδο.
Α.  Αν η μέγιστη γωνία κατά την οποία η ράβδος εκτρέπεται από την κατακόρυφο με τη βοήθεια της δύναμης F είναι 60ο, τότε το μέτρο της δύναμης αυτής είναι:
α. 3mg/π,       β. 3mg/4π,      γ.  mg
      Β. Να αιτιολογήσετε την απάντησή σας.


Ένα απομονωμένο ομογενές άστρο …


11.  Ένα απομονωμένο ομογενές άστρο περιστρέφεται γύρω από μία διάμετρό του έχοντας κινητική ενέργεια λόγω περιστροφής Κ.
Α.  Αν λόγω  βαρυτικής  κατάρρευσης η ακτίνα του άστρου ελαττωθεί στο μισό της αρχικής της τιμής, τότε το έργο των βαρυτικών δυνάμεων κατάρρευσης είναι:
α.  Κ,       β. 2Κ,        γ. 3Κ
Β. Να αιτιολογήσετε την απάντησή σας.
Θεωρείστε ότι κατά την κατάρρευση του άστρου δεν εκτινάσσεται ύλη στο διάστημα.


Ρυθμοί μεταβολής ορμής και στροφορμής τροχού


12. Ο τροχός του σχήματος έχει μάζα 1 kgr, ακτίνα R = 0,2 m και κυλίεται, χωρίς να ολισθαίνει, με επιτάχυνση αc.m= 3 m/sec2  πάνω σε οριζόντιο επίπεδο με την επίδραση της οριζόντιας δύναμης F.
Να υπολογίσετε τα μέτρα των ρυθμών  μεταβολής της ορμής και της στροφορμής του τροχού.
Δίνεται η ροπή αδράνειας του τροχού ως προς τον άξονα περιστροφής του Ic.m= (2/3)mR2.  


Ένα σφαιρίδιο αμελητέων διαστάσεων …


13.  Ένα σφαιρίδιο αμελητέων διαστάσεων εκτελεί κυκλική κίνηση ακτίνας R, όπως φαίνεται στο σχήμα. Τραβάμε το σχοινί και μειώνουμε την ακτίνα περιστροφής του σφαιριδίου στο μισό. Τότε η γωνιακή ταχύτητα περιστροφής του σφαιριδίου γύρω από το κέντρο της κυκλικής τροχιάς:
α) παραμένει ίδια.
β) διπλασιάζεται.
γ) υποδιπλασιάζεται
δ) τετραπλασιάζεται.
Να δικαιολογήσετε την απάντησή σας.


Δύο ομογενείς οριζόντιοι δίσκοι …


14.  Δυο ομογενείς οριζόντιοι δίσκοι μπορούν να περιστρέφονται γύρω από κοινό κατακόρυφο άξονα που διέρχεται από τα κέντρα μάζας τους όπως φαίνεται στο σχήμα. Αρχικά περιστρέφεται μόνο ο δίσκος 1 ενώ ο 2 είναι ακίνητος. Η ροπή αδράνειας I1 του δίσκου 1 είναι άγνωστη ενώ του δίσκου 2 είναι  Ι2= 4 kg.m2. Κάποια στιγμή ο δίσκος 2 αφήνεται να πέσει πάνω στο δίσκο 1 με τον οποίο και προσκολλάται. Στο διάγραμμα φαίνεται πώς μεταβάλλεται η στροφορμή του δίσκου 1
Από τα παραπάνω συνάγεται ότι η ροπή αδράνειας του δίσκου 1 είναι:
α. 1 kg.m2       β. 4 kg.m2      γ. 5 kg.m2        δ. 6 kg.m2
Να δικαιολογήσετε την απάντησή σας. 


Μια γυναίκα κάθεται σε κάθισμα …



15. Μια γυναίκα κάθεται σε κάθισμα που μπορεί να περιστρέφεται χωρίς τριβές γύρω από τον κατακόρυφο άξονά του. Η γυναίκα κρατά στα χέρια της έναν οριζόντιο περιστρεφόμενο χωρίς τριβές τροχό ποδηλάτου του οποίου η στροφορμή κατά τον κατακόρυφο άξονά του είναι  L0. Το κάθισμα στην κατάσταση αυτή είναι ακίνητο. Κάποια στιγμή η γυναίκα περιστρέφει τον τροχό γύρω από οριζόντιο άξονα κατά 1800, ώστε η πάνω επιφάνεια του τροχού να έρθει από κάτω. Μετά από αυτό το σύστημα γυναίκα – κάθισμα θα έχει αποκτήσει στροφορμή με μέτρο:
α. 2 L0.   β. L0.  γ. L0/2   δ. 0
Α.  Να επιλέξετε το γράμμα που αντιστοιχεί στο σωστό συμπλήρωμα.
Β. Να δικαιολογήσετε την επιλογή σας.


Σάββατο 18 Μαΐου 2013

S.O.S  ΘΕΜΑΤΑ Β ΓΙΑ ΤΟ ΣΤΕΡΕΟ – ΜΕΡΟΣ 1ο


Παράλληλη μεταφορά άξονα περιστροφής …

1. Μια λεπτή ομογενής ράβδος μήκους ℓ μπορεί να περιστρέφεται σε οριζόντιο επίπεδο γύρω από κατακόρυφο άξονα, ο οποίος είναι κάθετος στο ένα άκρο της Α, χωρίς τριβές. Η ροπή αδράνειας της ράβδου ως προς τον άξονα αυτόν είναι: I(A)= (1/3)m2.  Η ράβδος περιστρέφεται υπό την επίδραση σταθερής κατά μέτρο οριζόντιας δύναμης F η οποία ασκείται στο άλλο άκρο της Β και παραμένει συνεχώς κάθετη σ’ αυτή.
Α. Αν μεταφέρουμε παράλληλα τον άξονα περιστροφής στο μέσο της ράβδου ενώ η δύναμη εξακολουθεί να ασκείται στο άκρο Β με τον ίδιο τρόπο, τότε ο λόγος της αρχικής προς την τελική γωνιακή επιτάχυνση της ράβδου θα είναι:
   α) 2,     β)  1/2,    γ) 1/3.

Β. Να δικαιολογήσετε την απάντησή σας.

Ομογενής τροχός με τη βοήθεια σχοινιού ανέρχεται σε πλάγιο επίπεδο 

2. Ομογενής τροχός μάζας m = 2 kgr κυλίεται χωρίς να ολισθαίνει σε πλάγιο επίπεδο γωνίας κλίσης φ = 30ο. Στην περιφέρειά του υπάρχει εγκοπή αμελητέου βάθους. Μέσα στην εγκοπή είναι τυλιγμένο αβαρές λεπτό νήμα μεγάλου μήκους. Στο ελεύθερο άκρο του νήματος ασκούμε σταθερή δύναμη F με διεύθυνση παράλληλη προς το πλάγιο επίπεδο, όπως φαίνεται στο σχήμα και μέτρο κατάλληλο ώστε ο τροχός να κινείται με υcm = σταθ. 

Τότε το μέτρο της F είναι:
  α) 0 Ν,           β)  2 Ν,         γ) 5 Ν.
Να δικαιολογήσετε την απάντησή σας.
Δίνεται: g = 10m/sec2