Δακτύλιος - τρείς ράβδοι - σφαιρίδιο
Ο τροχός του σχήματος αποτελείται από ένα κατακόρυφο δακτύλιο αμελητέου πάχους, από ένα σφαιρίδιο το οποίο είναι προσκολλημένο σε ένα σημείο Σ του δακτυλίου και από τρεις ράβδους με μήκος ℓ ίσο με την ακτίνα του δακτυλίου. Οι ράβδοι είναι συγκολλημένες κι αυτές στο δακτύλιο ώστε να αποτελούν τρείς ακτίνες του, που ανά δύο να σχηματίζουν γωνία ίση με 120ο . Ο τροχός μπορεί να περιστρέφεται γύρω από ακλόνητο οριζόντιο άξονα που είναι κάθετος πάνω του και διέρχεται από το κέντρο του Κ.
Ο δακτύλιος, καθεμιά ράβδος και το σφαιρίδιο έχουν την ίδια μάζα m. Αρχικά, συγκρατούμε τον τροχό με την ακτίνα ΚΣ σε οριζόντια θέση. Ύστερα τον αφήνουμε ελεύθερο να περιστραφεί γύρω από τον οριζόντιο άξονα.
α) Πόση είναι η αρχική γωνιακή επιτάχυνση του τροχού;
β) Πόσος είναι ο αρχικός ρυθμός μεταβολής της στροφορμής σφαιριδίου;
γ) Πόση είναι η γωνιακή ταχύτητα του τροχού τη στιγμή που η ακτίνα ΚΣ γίνεται κατακόρυφη;
Οι απαντήσεις σας να δοθούν σε συνάρτηση με την επιτάχυνση βαρύτητας g, το μήκος ℓ των ράβδων και τη μάζα m.
Δίνεται η ροπή αδράνειας κάθε ράβδου ως προς το κέντρο μάζας της:
Ιc.m = m ℓ2/ 12.
1 σχόλιο :
Δείτε 2 σχόλια συναδέλφων του Ylikonet εδώ
Δημοσίευση σχολίου