Η φύση αγαπά την αλήθεια, και η αλήθεια της φύσης διεκδικεί το δικαίωμα να εκτίθεται μόνο σε όσους την ποθούν. Φ. Ντοστογιέφσκι

Σάββατο 28 Μαρτίου 2020

Κύλινδρος σε ταλαντευόμενη πλατφόρμα


Ένας συμπαγής ομογενής κύλινδρος μάζας Μ και ακτίνας R είναι τοποθετημένος πάνω σε μια οριζόντια ορθογώνια πλατφόρμα μεγάλου μήκους. Αρχικά τα δυο σώματα είναι ακίνητα ως προς το έδαφος. Τη στιγμή  t = 0 η πλατφόρμα ξεκινά να εκτελεί ταλάντωση κατά τη διεύθυνση του άξονα xx΄ με εξίσωση x = x0συνωt, όπου x η απομάκρυνση ενός σημείου της, έστω του Κ, από τη θέση ισορροπίας του (Ι). Ο κύλινδρος, με τον άξονά του ελεύθερο, σταθερά προσανατολισμένο κατά τη διεύθυνση του άξονα yy΄, κάθετη στη διεύθυνση της ταλάντωσης, αρχίζει να κυλίεται πάνω στην πλατφόρμα χωρίς να γλιστράει.  
Η μέγιστη ροπή που επενεργεί στον κύλινδρο κατά τη διάρκεια της κίνησης είναι:
α. Μx0ω2R
     3
β. Μx0ω2R
     2
γ. 2Μx0ω2R
     3
Να αποδείξετε την επιλογή σας.
Δίνεται η ροπή αδράνειας του κυλίνδρου ως προς τον άξονά του Ιc = mR2 / 2.

[Η άσκηση είναι παραλλαγή της άσκησης 40 σελ.387 σε μια προεπισκόπηση του βιβλίου ΙΤΤ Physics – 1]
Συμβουλή:  Η επιτάχυνση των σημείων της ακμής του κυλίνδρου που εφάπτεται της πλατφόρμας είναι ίση με την επιτάχυνση της πλατφόρμας. Μπορεί να μην έχουμε ολίσθηση, αλλά αν προσέξετε θα δείτε ότι εδώ δεν ισχύει η σχέση αc = αγR.

Απάντηση σε pdf: 
Απάντηση σε word:

Δευτέρα 23 Μαρτίου 2020

Κύλινδρος σε σανίδα που επιταχύνεται

Μια επίπεδη σανίδα μάζας m = 1 kg ολισθαίνει πάνω σε μια λεία οριζόντια επιφάνεια με την επίδραση σταθερής οριζόντιας δύναμης F= 50 N. Πάνω της είναι τοποθετημένος ένας κύλινδρος μάζας  M = 2 kg και ακτίνας R = 1 m, όπως φαίνεται στο σχήμα. Αν ο κύλινδρος δεν γλιστράει πάνω στην επιφάνεια της σανίδας, να βρείτε:
α.  Τη γραμμική και τη γωνιακή επιτάχυνση του κυλίνδρου
β. Την επιτάχυνση της σανίδας και την τριβή της με τον κύλινδρο.
Δίνεται για τον κύλινδρο Ιc = (1/2)ΜR2
Απάντηση σε pdf: 

Απάντηση σε word:


-----------------------------------------------------------------------------------------------------------------------

[Μετά από την παραπάνω θα σας φανούν πολύ απλές οι δύο παρακάτω παραλλαγές]:


1. Ένας ομογενής συμπαγής κύλινδρος μάζας Μ και ακτίνας R βρίσκεται πάνω σε μια οριζόντια πλατφόρμα που κινείται με σταθερή επιτάχυνση απ = 3 m/s2. Αν ο κύλινδρος κυλά χωρίς να γλιστράει πάνω στην πλατφόρμα με τον άξονά του κάθετο στη διεύθυνση κίνησης της πλατφόρμας,
α. Προσδιορίστε το μέγεθος της επιτάχυνσης του κέντρου μάζας του κυλίνδρου.
β. Αν ο μέγιστος συντελεστής στατικής τριβής είναι ίσος με τον συντελεστή τριβής ολισθήσεως μολ = 0,4, να βρείτε τη μέγιστη επιτάχυνση που μπορεί να έχει η πλατφόρμα χωρίς ολίσθηση μεταξύ του κυλίνδρου και πλατφόρμας.
Απάντηση 

----------------------------------------------------------------------------------------------------------------------

2.
Ένα κέρμα μάζας m και ακτίνας R στέκεται κάθετα στο δεξιό άκρο μιας οριζόντιας σανίδας μάζας Μ και μήκους L = 1 m, όπως φαίνεται στο σχήμα. Το σύστημα αρχικά ηρεμεί ως προς το έδαφος. Στη συνέχεια, τη χρονική στιγμή t = 0, η σανίδα τραβιέται προς τα δεξιά με μια σταθερή δύναμη και αρχίζει να κινείται με σταθερή επιτάχυνση ασ = 3 m/s2. Αν το νόμισμα δεν γλιστρά σε σχέση με τη σανίδα,

 α) Με πόση επιτάχυνση θα κινηθεί το κέρμα;
β) Πόσο μακριά προς τα δεξιά το κέρμα κινείται μέχρι να φτάσει το αριστερό άκρο της σανίδας;
β) Ποια χρονική στιγμή το νόμισμα θα φτάσει στο άλλο άκρο της σανίδας;
Δίνεται η ροπή αδράνειας Ιc = MR2/2, για το κέρμα.

Κυριακή 22 Μαρτίου 2020

Ομαλή κύλιση κυλίνδρου σε κινούμενη με σταθερή ταχύτητα σανίδα


Το πλαίσιο αναφοράς των ταχυτήτων είναι το έδαφος. Αν ο κύλινδρος κυλίεται χωρίς ολίσθηση πάνω στη σανίδα, η ταχύτητα του ανώτερου σημείου Α του τροχού είναι:
 α) 2VΚ
β) 2VΚ + Vσ
γ) 2VΚVσ
δ) (VΚ-Vσ
Απάντηση σε pdf: 

Απάντηση σε word:

Κύλιση κυλίνδρου με σταθερή ταχύτητα σε σανίδα που στηρίζεται σε λείο δάπεδο


Ένας κύλινδρος εκτελεί κύλιση χωρίς ολίσθηση με σταθερή ταχύτητα v πάνω σε μια σανίδα, της οποίας η πάνω επιφάνεια είναι αρκετά τραχιά, αλλά η κάτω επιφάνεια είναι λεία. Αν κόψουμε το σχοινί που συγκρατεί τη σανίδα, τότε:
α) Η σανίδα θα κατευθυνθεί προς τα δεξιά.
β) Η σανίδα θα κατευθυνθεί προς τα αριστερά.
γ) Η σανίδα θα παραμείνει ακίνητη.
δ) Η κατεύθυνση προς την οποία θα κινηθεί η σανίδα εξαρτάται από το αν η μάζα της είναι μεγαλύτερη ή μικρότερη από τη μάζα του κυλίνδρου. 
Απάντηση σε pdf: 
Απάντηση σε word:


Κυριακή 15 Μαρτίου 2020

Κύλιση τροχού με σταθερή επιτάχυνση σε παράλληλες σιδηροτροχιές

Ένα αβαρές, μη εκτατό σχοινί, είναι περασμένο στο αυλάκι μιας αβαρούς τροχαλίας Π, που μπορεί να περιστρέφεται χωρίς τριβές γύρω από ακλόνητο οριζόντιο άξονα και στη συνέχεια είναι τυλιγμένο πολλές φορές στην περιφέρεια ενός ομογενούς τροχού T ακτίνας R, που μπορεί να περιστρέφεται μαζί με τον άξονά του, ο οποίος είναι ένας αβαρής κύλινδρος ακτίνας R/2 σταθερά συνδεμένος με αυτόν. Ο κυλινδρικός άξονας του τροχού, μπορεί να κυλήσει χωρίς ολίσθηση κατά μήκος δύο οριζόντιων παράλληλων σιδηροτροχιών P, (επειδή στο σχήμα α φαίνεται μόνο η σιδηρογραμμή στην μπροστινή όψη του τροχού, στο σχήμα β παρατίθεται σχετική κάτοψη). Η μάζα του τροχού είναι Μ και  η ροπή αδράνειάς του ως προς τον νοητό άξονα που είναι κάθετος στο κέντρο C του τροχού είναι (1/2)ΜR2. Αν το άκρο Λ του σχοινιού τραβιέται προς τα κάτω με σταθερή επιτάχυνση g/2 και το σχοινί δεν ολισθαίνει καθώς ξετυλίγεται, να βρείτε:
α) Την κατεύθυνση προς την οποία θα κινηθεί το κέντρο C του τροχού.
β) Την επιτάχυνση του κέντρου C.
γ) Την κατεύθυνση και το μέτρο της τριβής μεταξύ της επιφάνειας του κυλινδρικού άξονα και των σιδηροτροχιών.
δ) Την τάση του σχοινιού.

Απάντηση σε pdf:  
Απάντηση σε word:

Πλαίσιο, μαγνητικό πεδίο, ρεύμα, σχοινιά και τάσεις


Ένας ομοιόμορφος (ομογενής και ισοπαχής) ορθογώνιος βρόχος με μήκη πλευρών d, (d < ) και με μάζα m κρέμεται οριζόντια με τη βοήθεια δύο κατακόρυφων σχοινιών. Ο βρόχος διαρρέεται από ρεύμα i και βρίσκεται μέσα σε ένα ομογενές οριζόντιο μαγνητικό πεδίο Β το οποίο είναι παράλληλο με τη μακρύτερη πλευρά του.
H τάση του σχοινιού που είναι δεμένο στο σημείο Α είναι:
                             α) mg – Bid,    β) mg/2 – Bid,     γ) mg/2 +Bid
Να επιλέξετε με αιτιολόγηση την ορθή σχέση. 

Απάντηση σε pdf:  
Απάντηση σε word:

Επιτάχυνση του σημείου επαφής τροχού – κυρτής επιφάνειας

 Μια κυρτή επιφάνεια έχει ομοιόμορφη ακτίνα καμπυλότητας ίση με 6R. Ένας τροχός ακτίνας R κυλίεται χωρίς να ολισθαίνει πάνω της με ταχύτητα υ σταθερού μέτρου. Η επιτάχυνση των σημείων του τροχού ως προς το κέντρο Ο της κυρτής επιφάνειας, τη στιγμή που έρχονται σε επαφή με αυτήν, έχει μέτρο:
                                                    α) 6υ2/7R,     β) 5υ2/6R,     γ) μηδέν 

Απάντηση σε pdf: 
Απάντηση σε word: