Η φύση αγαπά την αλήθεια, και η αλήθεια της φύσης διεκδικεί το δικαίωμα να εκτίθεται μόνο σε όσους την ποθούν. Φ. Ντοστογιέφσκι

Δευτέρα 15 Ιανουαρίου 2018

4ο. Ένα έμβολο, διάφοροι προσανατολισμοί.

Στο στόμιο ενός μπουκαλιού γεμάτο με νερό εισάγουμε ένα αβαρές έμβολο εμβαδού Α, το οποίο μπορεί να γλιστράει χωρίς τριβές με τα τοιχώματά του. Με τη βοήθεια κατάλληλης βαλβίδας αφαιρούμε τον αέρα που τυχόν έχει εγκλωβιστεί, οπότε το έμβολο έρχεται σε επαφή με την ελεύθερη επιφάνεια του νερού (σχήμα α). Στα σχήματα (β), (γ) και (δ) το ίδιο δοχείο το συγκρατούμε σε πλάγια, οριζόντια και αντεστραμμένη, αντίστοιχα, θέση.

Ι) Πόση είναι η πίεση στα σημεία Α και Β σε κάθε περίπτωση;

ΙΙ)  Η δύναμη που ασκεί το νερό στο έμβολο στο σχήμα (δ) είναι:

i. Ίση με το βάρος w του νερού.

ii. Ίση με  W + PatmA

iii. Ίση με  PatmA

3ο. Δύο ομοαξονικά έμβολα

  

 Το δοχείο του σχήματος είναι γεμάτο με ιδανικό υγρό και κλείνεται ερμητικά με δύο κυλινδρικά έμβολα Ε1 και Ε2 που τα εμβαδά τους Α1 και Α2, αντίστοιχα, συνδέονται με τη σχέση Α1 = 4Α2. Οι άξονες των δύο εμβόλων βρίσκονται πάνω στην ίδια οριζόντια γραμμή, τη διακεκομμένη γραμμή του σχήματος σε απόσταση h από την οροφή. Κάθετα στην επιφάνεια του εμβόλου Ε1 ασκούμε δύναμη μέτρου F1, της οποίας ο φορέας ταυτίζεται με τον άξονα του εμβόλου.

Ι) Για να παραμείνουν τα έμβολα ακίνητα στις αρχικές τους θέσεις, πρέπει ταυτόχρονα στο έμβολο  Ε2 να ασκήσουμε κάθετη δύναμη στο κέντρο του, που έχει μέτρο Fγια το οποίο ισχύει:

                        α. F2 = 4F1,     β.  F2 = F1,        γ.   F2 = F1/4

ΙΙ)  Η πίεση ΡΜ σε ένα σημείο Μ της οριζόντιας γραμμής των αξόνων των δύο εμβόλων είναι:

α. ΡΜ= F1/A1  ή   ΡΜ = F2/A2,     β ΡΜ= F1/A1+F2/A2,    γ.  ΡΜ= F1/A1+ Ρatm
ΙΙΙ) Αν στα σημεία της οροφής επικρατεί πίεση ίση με Patm τότε:

 α. F1 = (Patm – ρgh)Α1,      β.  F1 = ρghΑ1,      γ. F1 =  (Patm + ρgh)Α

Κι άλλα έμβολα σε δοχεία με υγρά - Αρχή του Pascal.

2ο.  Δύο έμβολα, δύο δυνάμεις, στο κενό χωρίς βαρύτητα.


Το δοχείο του πλαϊνού σχήματος βρίσκεται εκτός πεδίου βαρύτητας και εκτός ατμόσφαιρας. Είναι γεμάτο με νερό το οποίο συμπιέζεται από τις δυνάμεις F, που ενεργούν κάθετα στα δύο αντικριστά στεγανά έμβολα ίδιας διατομής Α, τα οποία ισορροπούν. Η πίεση στο σημείο Μ που βρίσκεται στην ευθεία των κοινών αξόνων των δύο εμβόλων και ισαπέχει από αυτά είναι:

                                  αμηδέν,       β) F/A,      γ)  2F/A

Επιλέξτε το σωστό και αιτιολογείστε.

Τρίτη 9 Ιανουαρίου 2018

1ο. Υγρό σε συγκοινωνούντα δοχεία - έμβολα

       1ο.   Υγρό σε συγκοινωνούντα δοχεία - έμβολα


Στο σύστημα των τριών συγκοινωνούντων δοχείων του σχήματος περιέχεται νερό μέχρι ορισμένου ύψους. Αποτελείται από τρείς κατακόρυφους κυλινδρικούς σωλήνες με εμβαδόν διατομής Αa = 12ˑ10-3 m2 ο αριστερός, Αb = 6ˑ10 –3 m2 ο κεντρικός, και Αc =  24 ˑ10 –3 m2 ο δεξιός. Η ελεύθερη επιφάνεια κάθε υδάτινης στήλης σε κάθε σωλήνα φράσσεται ερμητικά από ένα αβαρές  έμβολο, το οποίο δεν παρουσιάζει τριβές με τα τοιχώματα του σωλήνα. Τρία βάρη με μάζες ma, mb και mc, που τοποθετούνται πάνω στα έμβολα, καθορίζουν το ύψος κάθε υδάτινης στήλης, όπως φαίνεται στο σχήμα.
αΑν είναι γνωστό ότι οι μάζες των τριών βαριδιών έχουν τιμές 2 kg,  6 kgr και 8 kgr, να βrείτε ποια από αυτές αντιστοιχεί στην ma, ποια στην mb και ποια στην mc.
.......

Τρίτη 2 Ιανουαρίου 2018

Το 3ο γενικό διαγώνισμα στα κύματα


ΘΕΜΑ Δ
Πάνω σε μια οριζόντια τεντωμένη χορδή  πολύ μεγάλου μήκους,  προσανατολισμένη  στη διεύθυνση του άξονα xx΄, διαδίδεται προς τη θετική κατεύθυνση ένα κύμα μήκους κύματος λ = 10 m, το οποίο δημιουργείται από μια πηγή που βρίσκεται στη θέση x = 0 και ξεκινάει τη στιγμή t = 0 να ταλαντώνεται με εξίσωση:
           ψ =2ημ(0,5πt)        (οι μονάδες των μεγεθών στο S.I).

                                                                                            
 Σε απόσταση 100 m από την πηγή του κύματος, στη θέση x=100 m, έχει τοποθετηθεί μια μικροσυσκευή S αμελητέας μάζας και αμελητέων διαστάσεων, ώστε να μην επηρεάζει τη διάδοση του κύματος, η οποία μπορεί να εκπέμψει ήχο συχνότητας fs = 3393 Ηz.
Για να ενεργοποιηθεί όμως πρέπει να αποκτήσει κατακόρυφη προς τα κάτω επιτάχυνση ίση με -2,5 m/s2 (από κει και πέρα παραμένει σε διαρκή λειτουργία).
Ένας δέκτης A βρίσκεται ακίνητος στην ίδια κατακόρυφο με τη μικροσυσκευή και σε απόσταση 229 m από τη θέση όπου αρχικά αυτή ηρεμεί. Αν η ταχύτητα του ήχου είναι 342 m/s και το πλάτος του κύματος παραμένει σταθερό κατά τη διάρκεια της διάδοσης του: 
         α) .............

Δευτέρα 27 Νοεμβρίου 2017

Γενικό διαγώνισμα στις μηχανικές ταλαντώσεις και στις κρούσεις

                                        (3ωρο, για πολύ καλά προετοιμασμένους)

Το διαγώνισμα αυτό είναι δύσκολο όχι γιατί περιέχει εξεζητημένα θέματα, αλλά γιατί απαιτεί καλή προετοιμασία ώστε να προλάβετε να απαντήσετε σε όλα τα θέματα μέσα στις τρεις ώρες.

Αποσπάσματα:

Α1. Καθώς μειώνεται το πλάτος μιας φθίνουσας ταλάντωσης με δύναμη απόσβεσης της μορφής Fαπ= -bυ:
α. Μειώνεται η περίοδος της ταλάντωσης
β. μειώνεται η ενέργεια που χάνεται σε κάθε περίοδο
γ. μειώνεται η σταθερά απόσβεσης b
δ. αυξάνεται ο ρυθμός μείωσης του πλάτους.
..........................................................................
Α4. Δύο σφαίρες συγκρούονται κεντρικά και ελαστικά. Επομένως:
α. μεγαλύτερο μέτρο έχει η μεταβολή της ορμής της σφαίρας με τη μικρότερη μάζα.
β. οι δύο σφαίρες έχουν ίδια μεταβολή στην ορμή τους.
γ. Η μεταβολή της κινητικής ενέργειας της σφαίρας με τη μεγαλύτερη μάζα είναι μικρότερη από τη μεταβολή της κινητικής ενέργειας της σφαίρας με τη μικρότερη μάζα.
δ. το αλγεβρικό άθροισμα των ταχυτήτων πριν και μετά την κρούση είναι το ίδιο για κάθε σφαίρα.

............................................................................

Β2. Ένα σώμα εκτελεί εξαναγκασμένη ταλάντωση και η απομάκρυνση του σώματος σε συνάρτηση με το χρόνο μεταβάλλεται σύμφωνα με την εξίσωση x = 0,3ημ10πt (S.Ι). Αν η συχνότητα του διεγέρτη αυξηθεί κατά 5 Ηz, η μέγιστη ταχύτητα ταλάντωσης διπλασιάζεται σε σχέση με την αρχική. Επομένως η συχνότητα συντονισμού f0 του ταλαντωτή είναι:
                     α. f0 < 5 Hz,        β. f> 10 Hz,           γ. 5Hz < f0 < 10 Hz
Επιλέξτε την ορθή ανισότητα και αιτιολογήσετε την επιλογή σας.

Κυριακή 22 Οκτωβρίου 2017

3ο ΤΡΙΩΡΟ (+) ΣΤΙΣ ΤΑΛΑΝΤΩΣΕΙΣ (ΕΠΑΝΑΛΗΠΤΙΚΟ)




          Θέμα Α
 (Για καθεμιά από τις παρακάτω προτάσεις να γράψετε στο τετράδιό σας τον  αριθμό της αρχικής φράσης και, δίπλα, το γράμμα  ή τη σχέση που τη συμπληρώνει σωστά.).


Α.1.Στη διάταξη που φαίνεται στο διπλανό σχήμα, τα τρία σώματα Α, Β και Γ είναι κρεμασμένα μέσω ιδανικών ελατηρίων από την ίδια ράβδο. Ο κυκλικός δίσκος Δ μπορεί να περιστρέφεται σε κατακόρυφο επίπεδο γύρω από οριζόντιο άξονα που περνάει από το κέντρο του. Αυξάνουμε αργά – αργά τη συχνότητα περιστροφής του δίσκου, ξεκινώντας από πολύ μικρές τιμές, κι έτσι η ράβδος Ρ εξαναγκάζεται να εκτελέσει α.α.τ., σταθερού πλάτους παραμένοντας διαρκώς οριζόντια. Αν mA = mB = m, mΓ = 2m, και k­A = kΓ = k,  kB = 2k, με ποια σειρά θα αποκτήσουν μέγιστο πλάτος ταλάντωσης τα τρία σώματα;
α.    Α - Β - Γ,         β.    Γ - Β - Α, 
γ.    Β - Α - Γ,         δ.    Γ - Α - Β                                                                 
                                                                                      Μονάδες 5