Η φύση αγαπά την αλήθεια, και η αλήθεια της φύσης διεκδικεί το δικαίωμα να εκτίθεται μόνο σε όσους την ποθούν. Φ. Ντοστογιέφσκι

Δευτέρα 22 Νοεμβρίου 2010

5 ερωτήσεις στις ηλεκτρικές ταλαντώσεις - ΘΕΜΑ Β

1. Σε μια αμείωτη ηλεκτρική ταλάντωση η μέγιστη ενέργεια του μαγνητικού πεδίου είναι 10 Joule. Όταν η ένταση του ρεύματος είναι 1 Α τότε η ενέργεια του ηλεκτρικού πεδίου είναι 7,5 Joule.

I(A)          0                  1                             
UE(J)        7,5
UB(J)0      10
α. Να μεταφέρετε τον πίνακα στο τετράδιό σας και να συμπληρώσετε τα κενά.
β. Να δικαιολογήσετε τη συμπλήρωση δύο κενών, του κάτω αριστερά και του πάνω δεξιά.

Δείτε την απάντηση και τις υπόλοιπες ερωτήσεις εδώ.

Παρασκευή 5 Νοεμβρίου 2010

Μια επαφή που κινδυνεύει να χαθεί ... λόγω κρούσης!

  Ένα ελατήριο, σταθεράς k = 100 N/m, είναι στερεωμένο στο κάτω άκρο του με τον άξονά του κατακόρυφο. Στο πάνω άκρο του βρίσκεται στερεωμένος ένας αβαρής οριζόντιος δίσκος και πάνω σ’ αυτόν είναι τοποθετημένο ένα σώμα μάζας m = 1,6 kgr, χωρίς να είναι στερεωμένο με το δίσκο. Το σύστημα βρίσκεται σε κατάσταση ισορροπίας. Από ύψος h = 20 cm, πάνω από το σώμα που στηρίζεται στο δίσκο, αφήνουμε χωρίς αρχική ταχύτητα ένα δεύτερο σώμα μάζας ίσης με το πρώτο, το οποίο συγκρούεται πλαστικά με αυτό και το συσσωμάτωμα που δημιουργείται αρχίζει να κάνει  α.α.τ.
α) Να βρείτε την ενέργεια και το πλάτος της ταλάντωσης του συσσωματώματος.
β) Αν το ύψος είναι μεγαλύτερο κάποιου ho, το συσσωμάτωμα σε κάποια θέση αποσπάται από τον αβαρή δίσκο. Ποια είναι η θέση αυτή;
γ) Υπολογίστε το ho, ώστε το συσσωμάτωμα να συνεχίσει να εκτελεί την α.α.τ. Δίνεται ότι g = 10 m/sec2.
Απ. α) 2,88 J,  β) Α = 24 cm, γ) 32 cm πάνω από τη θέση ισορροπίας του συσσωματώματος, δηλαδή στη θέση όπου το ελατήριο αποκτά το φυσικό του μήκος, δ) ho = 48 cm.

Τετάρτη 3 Νοεμβρίου 2010

2ο θεωρητικό σημείωμα

Τι κάνουμε όταν χρειαζόμαστε τη δύναμη επαφής; 

Αυτά για την απώλεια επαφής. Πώς θα υπολογίσουμε όμως τη δύναμη επαφής σε μια συγκεκριμένη θέση;  
Επειδή η δύναμη επαφής είναι εσωτερική δύναμη ανάμεσα στα δύο σώματα δεν μπορούμε να την υπολογίσουμε από σχέσεις που αναφέρονται στην α.α.τ του συστήματος των σωμάτων, γιατί απλούστατα δεν υπάρχει σ’ αυτές. Γι αυτό πρέπει να ασχοληθούμε ξεχωριστά με τις α.α.τ κάθε σώματος και συγκεκριμένα με τη συνισταμένη δύναμη, που καθένα απ’ αυτά δέχεται και την εξάρτησή της με την απομάκρυνση x από τη θέση ισορροπίας.

Τετάρτη 27 Οκτωβρίου 2010

Δύο σώματα πάνω σε κατακόρυφο ελατήριο: Απώλεια επαφής, κ.λ.π

Το κάτω άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς k είναι στερεωμένο σε οριζόντιο επίπεδο. Στο άλλο άκρο του συνδέεται σταθερά σώμα Α μάζας Μ. Πάνω στο σώμα Α είναι τοποθετημένο σώμα Β μάζας m και το σύστημα ισορροπεί στη θέση Ι με το ελατήριο συσπειρωμένο από το φυσικό του μήκος κατά (ΙΦ). Στη συνέχεια εκτρέπουμε το σύστημα κατακόρυφα προς τα κάτω κατά (ΙΚ) = 2(Μ + m)g/k από τη θέση ισορροπίας του και το αφήνουμε ελεύθερο τη χρονική στιγμή t = 0. Το σύστημα των σωμάτων Α+Β αρχίζει να εκτελεί α.α.τ.
α) Να δείξετε ότι το σύστημα των δύο σωμάτων θα περάσει από τη θέση Φ, όπου το ελατήριο έχει το φυσικό του μήκος και ότι στη θέση αυτή θα χαθεί η μεταξύ τους επαφή.
β) Πόση είναι η ταχύτητα που έχουν τα σώματα τη στιγμή της απώλειας επαφής τους;
γ) Ποια χρονική στιγμή θα χαθεί η επαφή των σωμάτων ;
δ) Με ποιο ρυθμό μεταβάλλεται η ορμή των σωμάτων τη στιγμή που χάνεται η μεταξύ τους επαφή;
ε) Πόση είναι η μεταβολή της ορμής κάθε σώματος από τη στιγμή μηδέν μέχρι τη στιγμή που χάνεται η μεταξύ τους επαφή;
Για τις απαντήσεις σας στις ερωτήσεις β, γ, δ και ε θεωρείστε γνωστές τις μάζες των σωμάτων, τη σταθερά του ελατηρίου και την επιτάχυνση βαρύτητας.


Δείτε:
  •  Την απάντηση αναλυτικά εδώ.
  • Μια ολοκληρωμένη εργασία, με πολλές περιπτώσεις ταλάντωσης δύο σωμάτων σε επαφή, δημοσιευμένη στο Ylikonet από τον εξαίρετο συνάδελφο Σταύρο Πρωτογεράκη.


1ο θεωρητικό σημείωμα

Τρίτη 12 Οκτωβρίου 2010

Ένα σώμα – δύο ελατήρια, σε πλάγιο επίπεδο με μήκος ίσο με το συνολικό μήκος των δύο ελατηρίων.

* Στο σχήμα φαίνονται δύο ελατήρια, που το ένα τους άκρο είναι στερεωμένο σε ακλόνητο τοίχο ενώ το άλλο είναι στερεωμένο σε ένα σώμα Σ.  Όλο το σύστημα βρίσκεται πάνω σε ένα λείο πλάγιο επίπεδο. Τα μήκη των (ΑΦ) και (ΓΦ) αντιστοιχούν στα φυσικά μήκη των δύο ελατηρίων του σχήματος. Οι διαστάσεις του σώματος  Σ θεωρούνται αμελητέες.
α) Ποιες είναι οι παραμορφώσεις των δύο ελατηρίων στη θέση ισορροπίας του σώματος;
β) Τοποθετούμε το σώμα στη θέση Φ και το αφήνουμε ελεύθερο. Δείξτε ότι το σώμα θα κάνει α.α.τ  και υπολογίστε την περίοδο Τ της ταλάντωσης.
γ) Να βρείτε την ταχύτητα και την επιτάχυνση του σώματος τη στιγμή t =Τ/12. Ως αρχή χρόνων να θεωρήσετε τη στιγμή που το αφήνουμε ελεύθερο.
Δίνονται: η μάζα του σώματος m=1kgr, η επιτάχυνση της βαρύτητας g=10m/sec2, η γωνία φ = 30ο  και  ότι  k2 = k1 = 25 N/m.
Απ. α) 0,05 m,   0,05 m,  γ) 0,2π sec,  -0,25 m/sec, -2,5 3  m/sec2

Τρίτη 5 Οκτωβρίου 2010

ΔΙΩΡΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΑΠΛΕΣ ΑΡΜΟΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

A.    Ερωτήσεις

i)   Πολλαπλής επιλογής
(Για καθεμιά από τις παρακάτω προτάσεις να γράψετε στο τετράδιό σας τον  αριθμό της αρχικής φράσης και, δίπλα, το γράμμα  ή τη σχέση που τη συμπληρώνει σωστά.).


1.  Η επιτάχυνση ενός σώματος, που κάνει α.α.τ, μεταβάλλεται σε σχέση με την ταχύτητα σύμφωνα με το διάγραμμα:
                                                                                                                                 Μονάδες 10


2. Η απομάκρυνση x ενός απλού αρμονικού ταλαντωτή, σε συνάρτηση με το χρόνο, δίνεται από το πλαϊνό διάγραμμα. Η επιτάχυνση του σώματος και η ταχύτητά του έχουν αντίθετες κατευθύνσεις τη χρονική στιγμή που αντιστοιχεί:
 α.     στο σημείο Α.               β. στο σημείο Β.
 γ.     στο σημείο Γ.                δ. στο σημείο Δ. 
                                                                                                                             Μονάδες 10
Δείτε ολόκληρο το διαγώνισμα εδώ