Η φύση αγαπά την αλήθεια, και η αλήθεια της φύσης διεκδικεί το δικαίωμα να εκτίθεται μόνο σε όσους την ποθούν. Φ. Ντοστογιέφσκι

Πέμπτη 13 Οκτωβρίου 2022

Δέκα απορίες μαθητών στην κρούση

 1.  {Κ} = {Ρ} --->  υ = ;

Μου δόθηκε η ερώτηση

«Πόση πρέπει να είναι η ταχύτητα ενός σώματος ώστε η κινητική του ενέργεια και η ορμή του να έχουν ίδια αριθμητική τιμή;»

Και απάντησα ως εξής: 
12m υ·υ =  mυ  →  υ = 2 m/s

Όμως ο καθηγητής, στις οδηγίες που μας έδωσε, μας είπε να προσέξουμε, γιατί η σωστή λύση δεν περιλαμβάνει μόνο μια τιμή της ταχύτητας. Δεν μπορώ να βρω πού κάνω λάθος. Θα ήθελα να με διαφωτίσετε.

2. Με προβλημάτισε η λύση της παρακάτω άσκησης:


 «Ένας σκιέρ μάζας Μ, βρίσκεται ακίνητος πάνω σε μια παγωμένη οριζόντια επιφάνεια κρατώντας μια μπάλα μάζας m. Κάποια στιγμή πετά οριζόντια τη μπάλα με ταχύτητα υ προς ένα κατακόρυφο τοίχο. Η μπάλα συγκρούεται ελαστικά με τον τοίχο, αναπηδά και επιστρέφει στην αγκαλιά του σκιέρ. Ποια είναι η τελική ταχύτητα του σκιέρ, αν αγνοήσουμε το πεδίο βαρύτητας και τις αντιστάσεις του αέρα;»

Η απάντηση στο βιβλίο είναι η εξής:

Εφαρμόζοντας δύο φορές την Α.Δ.Ο θα βρούμε την ταχύτητα του σκιέρ αμέσως μετά το πιάσιμο της μπάλας. Όταν πετάει την μπάλα προς τον τοίχο,

                                                               Μυ1 = mυ                      (1)

Και όταν πιάνει την μπάλα κατά την επιστροφή  της,

                                             ( Μ + m)V1 = Mυ1 + mυ = 2mυ     (2)

                                                        V1 = 2mυm+M                    (3)

 Έχω την εξής απορία που αφορά στη σχέση (2). Γνωρίζω ότι η σύγκρουση της μπάλας με τον άνθρωπο είναι ανελαστική και για αυτό τα δύο σώματα θα αποκτήσουν κοινή ταχύτητα. Δεν καταλαβαίνω όμως γιατί οι συγγραφείς  έχουν εξισώσει το ( Μ + m)V1 με το 2mυ. Πώς προέκυψε το 2mυ!



3. Ποιος από τους δυο μας κάνει λάθος;
Για εργασία στο σπίτι ο καθηγητής μας, μας έδωσε την εξής άσκηση:


Έστω ότι ένα υποθετικό τρένο μάζας m = 2 kg, φορτωμένο με ένα βαρύ σώμα μάζας Μ = 48 kg, κινείται ελεύθερα χωρίς τριβές με ταχύτητα υ = 1m/s πάνω σε μια ευθύγραμμη σιδηρογραμμή. Ξαφνικά το σώμα εκτοξεύεται κάθετα προς την πορεία του τρένου με ταχύτητα 0,5 m/s. Η σιδηρογραμμή είναι αρκετά σταθερή και το άδειο τρένο συνεχίζει το ταξίδι του.
Ποια είναι η τελική ταχύτητα υ΄ του τρένου μετά την εκτόξευση του σώματος;

Η λύση μου έχει ως εξής. Επειδή δεν ασκείται κάποια δύναμη κατά τη διεύθυνση της κίνησης του τρένου, η ορμή του συστήματος (τρένο – φορτίο) κατά τη διεύθυνση αυτή διατηρείται,
                                                            (Μ+m)υ = mυ΄         (1)
                                                               υ΄ = (Μ+mm
                                                                    υ΄ =  (48kg + 2kg)(1m/s)2kg = 25 m/s
Επειδή η λύση μου φάνηκε αρκετά απλή είπα να βρω και κάτι άλλο. Σκέφτηκα να δω τι συμβαίνει με τη συνολική κινητική ενέργεια του συστήματος. Γνωρίζω ότι εδώ η συνολική κινητική ενέργεια δεν διατηρείται (έχουμε κάτι σαν σχάση όπου η ενέργεια αυτή αυξάνεται). Πράγματι,  η ενέργεια αυτή πριν την αποβολή του σώματος ήταν 25 J, ((1/2)50·12) ενώ μετά παίρνει την τιμή 631 J ( (1/2)2·252+ (1/2)48·0,52).
Όμως ένας συμμαθητής μου, πολύ καλός στη φυσική, σε επικοινωνία που είχα μαζί του, μου είπε ότι αυτός έχει βρει άλλη τιμή για την ταχύτητα του τρένου, που δε θέλησε να μου την πει. Αντί γι' αυτό μου είπε ότι,τελικά, το σύστημα έχει κινητική ενέργεια 600 J μικρότερη από αυτήν που έχω βρει.
Ποιος από τους δυο μας κάνει λάθος;




4. Παραβιάζεται η αρχή διατήρησης της ορμής στο παρακάτω παράδειγμα;



 Θεωρείστε μέσα σε ένα ακίνητο βαγόνι τρένου δύο ελαστικές μπάλες Α και Β, που κινούνται οριζόντια με αντίθετες ορμές Ρ και -Ρ, αντίστοιχα. Κάποια στιγμή, η μπάλα Β που έχει ορμή -Ρ συγκρούεται  ελαστικά με το κατακόρυφο  τοίχωμα του βαγονιού και επιστρέφει με ορμή Ρ.  Πριν την κρούση η συνολική ορμή ήταν Ρ + (-Ρ) = 0, μετά είναι Ρ + Ρ = 2Ρ.

Δεν παραβιάζει αυτό την Αρχή διατήρησης της ορμής;

5. Γιατί δεν ισχύει ΔΚ = (ΔΡ)2/2m;

Όπως είναι γνωστό, η κινητική ενέργεια και η ορμή ενός σώματος συνδέονται με τη σχέση Κ = Ρ2/2m. Όμως στο παράδειγμα του διπλανού σχήματος, η μεταβολή ορμής είναι διαφορετική του μηδενός (2P), ενώ η μεταβολή της κινητικής ενέργειας είναι ίση με μηδέν.  Φαίνεται, δηλαδή, ότι δε συνδέονται με παρόμοια σχέση και οι μεταβολές αυτών των μεγεθών. Γιατί, όμως, δεν ισχύει ΔΚ = (ΔΡ)2/2m



6. Ένας πολύ μεγάλος αριθμός κρούσεων ανά sec και η πίεση που προκαλούν
Η παρακάτω ερώτηση πολλαπλής επιλογής έχει πέσει σε δημόσιες εξετάσεις εισαγωγής στην ανώτατη εκπαίδευση κάποιας μεγάλης χώρας.
Η μάζα ενός μορίου υδρογόνου είναι 3,32·10-27 kg. Αν 1023 μόρια υδρογόνου προσπίπτουν ανά sec σε μια λεία επίπεδη επιφάνεια 2 cm2 υπό γωνία 450 με ταχύτητα 103 m/s και αναπηδούν ελαστικά, τότε η πίεση στην επιφάνεια είναι:
   α. 2,35·102 Ν/m2,   β.  2,35·103 Ν/m2,   γ. 4,70·103 Ν/m2  

Σκέφτηκα να βρω τη συνολική μεταβολή ορμής των μορίων και να διαιρέσω με το χρόνο 1s, δηλαδή, (dP1+dP2+dP3+ … +dPN)/(1 s), αλλά δε βρίσκω αυτή τη σκέψη σωστή, γιατί το πηλίκο αυτό μπορεί να σπάσει σε Ν κλάσματα με παρονομαστή 1 s και έτσι είναι σα να θεωρώ ότι κάθε μεταβολή διαρκεί 1 s. Κάθε τέτοια όμως μεταβολή διαρκεί όσο και η κρούση κάθε μορίου, δηλαδή απειροελάχιστο χρόνο. Έχω μπερδευτεί. 



7. Ξεκίνησα με το θεώρημα έργου – ενέργειας και βρέθηκα σε αδιέξοδο.
Δοκίμασα να λύσω την παρακάτω άσκηση ελαστικής κρούσης:
Η μπάλα πετιέται οριζόντια με αρχική ταχύτητα υ­0 από το σημείο Α του αριστερού τοιχώματος ενός φρεατίου και συγκρούεται ελαστικά με το απέναντι δεξί τοίχωμα. Τελικά πέφτει στη βάση του φρεατίου στο σημείο Β, που βρίσκεται στην ίδια κατακόρυφο με το Α. Τριβές δεν υπάρχουν. ­ 
Η ερώτηση είναι, 
ποια από τις παρακάτω παραστάσεις 

       α. L√g/h   ,  β. L√2g/h   ,  γ. 2L√g/h   ,   δ. 2L√2g/h   

αντιστοιχεί στην αρχική ταχύτητα υ0.
Ξεκίνησα με το θεώρημα έργου – ενέργειας και κατέληξα στη σχέση:
                                                          υΒ2 = υ02 + 2gh
Εδώ σταμάτησα, δεν μπορώ να προχωρήσω άλλο. Δεν ξέρω πώς να χρησιμοποιήσω το L για να απαλλαγώ από την τελική ταχύτητα υΒ.



8.  Μια κεντρική κρούση όπου υ1  υ/2 

Απορία μαθητή
Μου δόθηκε η εξής ερώτηση:
Θεωρείστε δύο λεία σφαιρικά σώματα Σ1 και Σ2 με ίσες μάζες. Το Σ2 είναι ακίνητο πάνω σε λείο οριζόντιο επίπεδο, ενώ το Σ1 κινείται πάνω στο επίπεδο αυτό και πλησιάζει το Σ2 με ταχύτητα υ. Υποθέστε ότι μετά την κρούση τα δύο σώματα Σ1 και Σ2 έχουν ταχύτητες υ1 και υ2, αντίστοιχα, οι οποίες είναι συγγραμμικές με την υ και έχουν την ίδια φορά με αυτήν.
Να δείξετε ότι υ1  υ/2 .
     Να πώς σκέφτηκα: Αφού όλες οι ταχύτητες είναι συγγραμμικές και έχουν την ίδια φορά, μπορώ να υποθέσω ότι  υ ≥0, υ1≥0, υ2≥0.
    Εφαρμόζω Α.Δ.Ο:                    mυ = mυ1 + mυ2 
                                                        υ = υ1 + υ2              (1)
   Στη συνέχεια όμως μπερδεύομαι και δεν μπορώ να σκεφτώ πώς θα αποδείξω αυτό που μου ζητούν. Από την εκφώνηση προκύπτει ότι η κρούση είναι κεντρική, δεν δίνεται όμως καμιά άλλη πληροφορία. Γνωρίζω ότι η τιμή των τελικών ταχυτήτων  διαμορφώνεται ανάλογα με το είδος της κρούσης. Έτσι, αν θεωρήσουμε, για παράδειγμα, ότι υ = 10 m/s και υ2 = 4 m/s, τότε από την παραπάνω σχέση  της Α.Δ.Ο. προκύπτει ότι υ1 = 6 m/s, οπότε δεν έχουμε  υ1  υ/2.  (Σε αυτήν την περίπτωση, βέβαια, το Σ1 πρέπει να περάσει μέσα από το Σ2, αλλά από την εκφώνηση δεν προκύπτει ότι κάτι τέτοιο είναι αδύνατο).
Κάνω κάπου λάθος; Μου έχουν πει ότι η παραπάνω ερώτηση έχει μια πολύ εύκολη απάντηση.
Θα χαρώ πολύ αν μου δώσετε τα φώτα σας.
Νίκος Τ.



9. Ελαστική κρούση τριών σωμάτων. Ολική μεταφορά.

Είναι γνωστό ότι στην περίπτωση της ελαστικής κρούσης του διπλανού σχήματος, η κινητική ενέργεια του σώματος Α θα μεταφερθεί, τελικά, μέσω του Β, στο Γ. Υπάρχει άλλη περίπτωση ελαστικής κρούσης τριών σωμάτων, όπου τελικά έχουμε ολική μεταφοράς της κινητικής ενέργειας σε ένα μόνο από αυτά;

Η απάντηση του καθηγητού μου είναι, ΝΑΙ, και όχι μόνο μια, αλλά άπειρες! Μου δίνετε ένα παράδειγμα παρακαλώ;


10. “ Όταν οι πάγοι λιώνουν”

Στο παρακάτω πρόβλημα δεν δυσκολεύτηκα στο μέρος Ι. Θα ήθελα όμως μια λύση για το ΙΙ. Οι απαντήσεις μου δεν συμφωνούν με τις απαντήσεις του βιβλίου μου. 

Ένα ανοικτό μικρό βαγόνι κινείται με ταχύτητα υ, χωρίς τριβές και χωρίς αντίσταση από τον αέρα, πάνω στις ράγες μιας ευθύγραμμης σιδηροδρομικής γραμμής. Κάποια στιγμή, καθώς διέρχεται κάτω από μια γέφυρα, αφήνονται από αυτήν να πέσουν κατακόρυφα πάνω στο βαγόνι ένας αριθμός από παγοκολόνες (ίσως ένας έξυπνος τρόπος να φορτώσουμε γρήγορα και με λιγότερο κόπο το βαγόνι). Η κρούση είναι πλαστική.
Ι. Θεωρείστε το σύστημα «βαγόνι - παγοκολόνες». Τι συμβαίνει στις παρακάτω ποσότητες αυτού του συστήματος, καθώς οι παγοκολόνες “φορτώνονται” στο βαγόνι;
α. Στην οριζόντια ορμή του,
β. στην ταχύτητά του,
γ. στην κινητική του ενέργεια.
Να αιτιολογήσετε την απάντησή σας.

Παρασκευή 23 Σεπτεμβρίου 2022

A.A.T: ΘΕΜΑ Β. (Τέσσερα εύκολα, αλλά πονηρά θέματα)

   

 
1. Αν το κιβώτιο του σχήματος συνδεθεί με το αριστερό ελατήριο σταθεράς k1 και διεγερθεί κατάλληλα θα εκτελέσει  α.α.τ. με συχνότητα f1. Όμοια, αν συνδεθεί με το δεξί ελατήριο σταθεράς k2 θα εκτελέσει α.α.τ με συχνότητα f2.

Δείξτε ότι αν συνδεθεί και με τα δύο ελατήρια όπως στο τρίτο σχήμα, και διεγερθεί κατάλληλα, θα κάνει α.α.τ. με συχνότητα f  για την οποία:

f2 = f12 + f22

 (Δίνεται ότι όταν το κιβώτιο βρίσκεται στη θέση Ι τα δύο ελατήρια έχουν το φυσικό τους μήκος. Δίνεται, επίσης, ότι το κιβώτιο κινείται χωρίς τριβές στην οριζόντια επιφάνεια και ότι τα υποστηρίγματα δεξιά και αριστερά στα οποία στερεώνονται τα ελατήρια είναι σταθερά). 

 

 

2. Ένα υλικό σημείο εκτελεί α.α.τ. Για κάθε λЄR το ελάχιστο χρονικό διάστημα που χρειάζεται το υλικό σημείο για να μεταβεί από τη θέση x = +A/λ με υ > 0 στη θέση x = -A/λ με υ < 0, είναι:

α. Τ/4,  β. Εξαρτάται από την τιμή του λ,  γ. Τ/2

 

 

 

3. Στη διάρκεια μιας περιόδου η δυναμική ενέργεια ταλάντωσης είναι μεγαλύτερη από την κινητική ενέργεια για χρόνο:

α. Τ/2,   β. Τ/3,  γ. Τ/4

 

4. Ένα σώμα εκτελεί α.α.τ. περιόδου Τ. Αν Sμεγ. και Sελαχ. είναι, αντίστοιχα, το μέγιστο και το ελάχιστο μήκος του διαστήματος που διανύει σε χρόνο Τ/3, να δείξετε ότι:

Sμεγ.\ Sελαχ =  √3

 Τα θέματα και οι απαντήσεις εδώ

Τρίτη 20 Σεπτεμβρίου 2022

Απλή Αρμονική Ταλάντωση. Δέκα ερωτήσεις

 ΕΡΩΤΗΣΕΙΣ

Θέμα Α
1. Στην α.α.τ το πηλίκο της επιτάχυνσης του σώματος προς την απομάκρυνσή του από το κέντρο της ταλάντωσης  είναι, κάθε στιγμή, μέτρο της
α.  σταθεράς επαναφοράς
β.  γωνιακής συχνότητας
γ. (γωνιακής συχνότητας)2
δ. δύναμης επαναφοράς

2. Για ένα σώμα που εκτελεί α.α.τ η κινητική ενέργεια Κ δίνεται από τη σχέση Κ = Κοσυν2ωt. Η μέγιστη τιμή της δυναμικής  του ενέργειας είναι:
α.  Κο
β.  μηδέν
γ.  Κο/2
δ. αδύνατο να εκτιμήσουμε.

3.  Η δυναμική  ενέργεια ενός σώματος που ταλαντώνεται είναι συνάρτηση της απομάκρυνσή  του x από την κεντρική θέση της τροχιάς του. Αν λ είναι θετική σταθερά, η κίνησή του θα είναι α.α.τ  όταν:
α. U = λx2
β. U = -λx2/2
γ. U = k
δ. U = λx

Τρίτη 10 Νοεμβρίου 2020

Ένα επιτραπέζιο παιχνίδι

 


Οι σανίδες Α και Β του σχήματος κινούνται μαζί, η μια ακριβώς πάνω στην άλλη, με κοινή ταχύτητα υ, κατά μήκος μιας λείας οριζόντιας επιφάνειας. Κάποια στιγμή η σανίδα Β συγκρούεται πλαστικά και μετωπικά με μια ακίνητη όμοια σανίδα C. Μετά τη σύγκρουση, οι σανίδες B και C κινούνται μαζί, και η σανίδα Α γλιστρά στην πάνω πλευρά της C και σταματά την κίνησή της σε σχέση με τη C στη θέση που φαίνεται στο σχήμα.

Ποιο είναι το μήκος κάθε σανίδας;

Και οι τρεις σανίδες έχουν την ίδια μάζα m, το ίδιο μήκος L και ίδιο σχήμα. Μεταξύ των Α και Β δεν υπάρχει τριβή, ο συντελεστής τριβής ολισθήσεως μεταξύ των σανίδων A και C είναι μ. Η επιτάχυνση g λόγω βαρύτητας είναι γνωστή.  

Η Λύση σε pdf:

Η Λύση σε word:



Δευτέρα 9 Νοεμβρίου 2020

Ελαστική μετωπική κρούση δύο σφαιρών με αρχική ταχύτητα, όπου τελικά η μια ακινητοποιείται (δύο περιπτώσεις)

 Δύο λείες σφαίρες Α και Β με μάζες mΑ και mΒ, που κινούνται σε λείο οριζόντιο επίπεδο με ταχύτητες υΑ = 6 m/s και υΒ = 1,5 m/s, αντίστοιχα, συγκρούονται μετωπικά και ελαστικά.

Α. Να βρείτε το λόγο mΑ/mΒ των μαζών των  δύο σφαιρών ώστε η σφαίρα Α μετά τη σύγκρουση να ακινητοποιηθεί αν οι ταχύτητες των δύο σφαιρών:


 α. έχουν την ίδια κατεύθυνση (ομόρροπες)

 

β. έχουν αντίθετη κατεύθυνση (αντίρροπες)


Β. Να υπολογίσετε την ταχύτητα της σφαίρας Β και στις δύο περιπτώσεις.

Απάντηση: 

Α. α. 0,5,  β. 1,5.    Β. 4,5 m/s,  7,5 m/s

Η Λύση σε pdf:


Παρασκευή 11 Σεπτεμβρίου 2020

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2020 ΣΤΗ ΦΥΣΙΚΗ

         ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2020 ΣΤΗ ΦΥΣΙΚΗ


                            Students in virus epicentre to sit national high school exam early next  month

                                                        Φυσική (Νέο σύστημα)

                                                           Φυσική (Παλαιό σύστημα)  

                                                           Φυσική Ομογενών (Νέο σύστημα)

                                                Φυσική Ομογενών (Παλαιό σύστημα)

                                       Οι λύσεις των θεμάτων στο νέο σύστημα 

                            Οι λύσεις των θεμάτων στο παλαιό σύστημα

                            Οι λύσεις των θεμάτων για τους ομογενείς 

                          Τα σχόλια των συναδέλφων στο Υλικονετ

Δευτέρα 22 Ιουνίου 2020

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ 2020


Για τα θέματα Φυσικής Ημερησίων και Εσπερινών πατήστε εδώ.

Για τα θέματα ΦΥΣΙΚΗΣ (Ημερήσια) περσινή ύλη, πατήστε εδώ.

Για τα θέματα ΦΥΣΙΚΗΣ (Εσπερινά) περσινή ύλη, πατήστε εδώ.

Σύντομες και αναλυτικές απαντήσεις:

Κυριακή 14 Ιουνίου 2020

Δύο σανίδες κι ένα σχοινί (ένα εύκολο-δύσκολο θέμα)

[Σε ένα σύστημα σωμάτων σε ισορροπία, η συνθήκη ΣFεξ = 0 και Στεξ = 0 ισχύει και για το σύστημα και για κάθε σώμα ξεχωριστά. Πρέπει να εφαρμόζεται μετά από τον προσεκτικό σχεδιασμό των δυνάμεων σε κάθε σώμα ξεχωριστά].

Δύο όμοιες, ορθογώνιες, ομογενείς σανίδες, η καθεμιά μάζας m και μήκους L, συνδέονται με έναν μεντεσέ Ο στα άνω άκρα τους. Η καθεμιά σχηματίζει γωνία θ με την κατακόρυφο. Ένα σχοινί αμελητέας μάζας συνδέει το κάτω άκρο της δεξιάς σανίδας με την αριστερή σανίδα και είναι κάθετο σε αυτήν, όπως φαίνεται στο σχήμα. Ολόκληρη η διάταξη  βρίσκεται σε ένα οριζόντιο δάπεδο χωρίς τριβές.
α) Να βρείτε τη δύναμη που ασκεί το δάπεδο στήριξης σε κάθε σανίδα.
β) Πόση είναι η τάση στο νήμα;
γ) Ποια δύναμη ασκεί κάθε σανίδα στην άλλη στο πάνω άκρο της μέσω του μεντεσέ;  
H επιτάχυνση της βαρύτητας g θεωρείται γνωστή. 

[Πηγή: David Morin Introduction to classical mechanics]
                  Η Απάντηση: