Η φύση αγαπά την αλήθεια, και η αλήθεια της φύσης διεκδικεί το δικαίωμα να εκτίθεται μόνο σε όσους την ποθούν. Φ. Ντοστογιέφσκι

Κυριακή 26 Απριλίου 2020

Δύο δίσκοι χόκεϊ επί πάγου


Δύο δίσκοι χόκεϋ επί πάγου ακτίνων R και μάζας m κινούνται ο ένας προς τον άλλο σε μια οριζόντια επιφάνεια, χωρίς τριβή, με ίσες και αντίθετες ταχύτητες σε μια πορεία μετωπικής σύγκρουσης. Και οι δύο περιστρέφονται αριστερόστροφα γύρω από το αντίστοιχο κέντρο μάζας τους με γωνιακή ταχύτητα ω, όπως φαίνεται στην παρακάτω εικόνα.
α. Υπολογίστε τη συνολική ορμή και στροφορμή του συστήματος των δύο δίσκων πριν την κρούση.
β. Είναι η συνολική στροφορμή του συστήματος των δίσκων μετά την κρούση ίδια με αυτήν πριν την κρούση;
γ. Αν η κρούση είναι πλαστική και οι δύο δίσκοι συγκολλώνται σε ένα διπλό δίσκο, ποια είναι η ροπή αδράνειας του διπλού δίσκου ως προς το κέντρο μάζας του; (Δίνεται η ροπή αδράνειας κάθε δίσκου ως προς το δικό του κέντρο μάζας του ίση με ½ mR2).
δ. Θα περιστρέφεται ο διπλός δίσκος γύρω από το κέντρο μάζας του; Αν ναι να υπολογίσετε το τη γωνιακή του ταχύτητα, αν όχι να εξηγείστε γιατί. 

Απάντηση σε pdf:  
 Απάντηση σε word:


Σάββατο 25 Απριλίου 2020

Μετρώντας την πυκνότητα ενός υγρού με ανεστραμμένο σωλήνα σχήματος U


Τα ανοικτά σκέλη ενός σωλήνα σχήματος U είναι γυρισμένα προς τα κάτω και βυθισμένα σε δύο δοχεία Α και Β. Το Α περιέχει νερό και το Β κάποιο άγνωστο υγρό. Η πυκνότητα του νερού είναι 1g /cm3. Αντλούμε μια ποσότητα αέρα από το άνοιγμα Γ και κατόπιν το κλείνουμε με τη βοήθεια της βαλβίδας β. Ως αποτέλεσμα αυτού, στον σωλήνα Α εισχωρεί νερό σε ύψος 10 cm πάνω από την ελεύθερη στάθμη του και στον σωλήνα Β υγρό σε ύψος 12 cm πάνω από την ελεύθερη στάθμη του.
Να εξετάσετε την ορθότητα των παρακάτω προτάσεων:
α. Η πυκνότητα του υγρού στο δοχείο Β είναι 0,83 g / cm3.
β. Εάν επαναλάβουμε το πείραμα με τη στάθμη του υγρού στο ένα δοχείο σε διαφορετικό ύψος από το ύψος της στάθμης του άλλου και αφαιρέσουμε ποσότητα αέρα, ο λόγος των υψών των υγρών στα δύο σκέλη του σωλήνα θα παραμείνει 5:6.
γ. Το υγρό στο δοχείο Β έχει πυκνότητα 1,2 g / cm3

Απάντηση σε pdf: 

Απάντηση σε word:

Τετάρτη 22 Απριλίου 2020

Μεγάλος κύλινδρος υπερπηδά μικρό κύλινδρο

[Μια παραλλαγή της ασκ. 4.57 του σχολικού]

Δύο ομογενείς κύλινδροι διαμέτρων R και r, αντίστοιχα, ηρεμούν σε οριζόντιο επίπεδο όπως φαίνεται στο σχήμα. Η διάμετρος του μεγαλύτερου κυλίνδρου είναι τέσσερις φορές μεγαλύτερη από του μικρότερου. Γύρω από τη μέση του μεγαλύτερου κυλίνδρου τυλίγεται ένα λεπτό σχοινί, το ελεύθερο άκρο του οποίου τραβιέται με σταθερή οριζόντια δύναμη F. Υποθέτοντας ότι ο συντελεστής οριακής τριβής μ είναι ίσος με τον συντελεστή τριβής ολισθήσεως και ίδιος για όλες τις επιφάνειες επαφής, να βρείτε:
α) Την ελάχιστη τιμή του ώστε ο μεγαλύτερος κύλινδρος να αναρριχηθεί κυλιόμενος, χωρίς ολίσθηση, πάνω στον μικρότερο και να τον προσπεράσει χωρίς ο μικρότερος να μετατοπιστεί ή να περιστραφεί.
Θεωρείστε ότι η δύναμη F είναι επαρκής ώστε να ανεβάσει τον μεγάλο κύλινδρο πάνω στον μικρό.
β) Το ελάχιστο μέτρο της F ώστε ο μεγάλος κύλινδρος να αναρριχηθεί στον μικρότερο.
Δίνεται το βάρος του μεγάλου κυλίνδρου W = 10 Ν .

Απάντηση σε pdf: 

Απάντηση σε word 

Τρίτη 21 Απριλίου 2020

Αγώγιμος τριγωνικός αγωγός σε ΟΜΠ


Κατασκευάζουμε ένα ισόπλευρο τρίγωνο ΑΒΓ, πλευράς α, από ένα ομογενές σταθερής κυλινδρικής διατομής αγώγιμο σύρμα. Στη συνέχεια συνδέουμε τις κορυφές του Α και Β με τους πόλους ηλεκτρικής πηγής. Με τη βοήθεια ενός αμπερομέτρου διαπιστώνουμε ότι η πλευρά ΑΒ διαρρέεται από ρεύμα i, όπως φαίνεται στο σχήμα. Τοποθετούμε το τρίγωνο σε ένα ομογενές μαγνητικό πεδίο Β κάθετο στο επίπεδό του.
Το μέτρο της μαγνητικής δύναμης στο τρίγωνο είναι:
                              α. 2Βiα,             β. (3/2)Βiα,            γ. μηδέν
Να επιλέξτε με αιτιολόγηση το σωστό. 

Απάντηση σε pdf: 

Απάντηση σε word:

Σάββατο 18 Απριλίου 2020

Ισορροπία συστήματος σωμάτων σε μαγνητικό πεδίο

Σε ένα μη αγώγιμο ομογενή δακτύλιο, ακτίνας r, στερεώνεται κατά μήκος μιας διαμέτρου του μια αβαρής αγώγιμη ομογενής ράβδος ΑΒ μήκους 2r και αντίστασης 2R. Το σύστημα των δύο σωμάτων μπορεί να περιστρέφεται χωρίς τριβές γύρω από σταθερό οριζόντιο άξονα κάθετο στο κέντρο του Ο. Στα άκρα ενός αβαρούς, μη εκτατού, νήματος  που είναι τυλιγμένο στην περιφέρεια του δακτυλίου αναρτώνται δύο σώματα με μάζες m και 2m, αντίστοιχα.. Το σύστημα τοποθετείται σε ένα ομογενές μαγνητικό πεδίο Β κυκλικής διατομής ακτίνας r/2, κάθετο στο επίπεδο του δακτυλίου, όπως φαίνεται στο σχήμα. Δημιουργούμε ένα κύκλωμα με τρία καλώδια που τα συνδέουμε στα άκρα Α και Β και στο κέντρο Ο της ράβδου. Στο κεντρικό καλώδιο παρεμβάλουμε ηλεκτρική πηγή αμελητέας αντίστασης και αφήνουμε το σύστημα δακτυλίου - ράβδου - σωμάτων ελεύθερο να κινηθεί. Παρατηρούμε ότι το σύστημα παραμένει ακίνητο (τα καλώδια σύνδεσης της ράβδου με την πηγή είναι λεπτά και χαλαρά και δεν ασκούν δυνάμεις στο σύστημα). Η τάση V στους πόλους  της πηγής είναι: 
α. 3mgR
  Br
β. mgR
2Br
γ. 4mgR
 Br

Επιλέξτε το σωστό και αιτιολογείστε την επιλογή σας. 
Απάντηση σε pdf:  
Απάντηση σε word:

Δευτέρα 13 Απριλίου 2020

Νερό σε δεξαμενή μαζί με αέρα υπό πίεση


Το σχήμα δείχνει μια μεγάλη κλειστή κυλινδρική δεξαμενή που περιέχει νερό. Αρχικά, ο αέρας που παγιδεύεται πάνω από την επιφάνεια του νερού έχει ύψος ho και πίεση 2po, όπου po είναι η ατμοσφαιρική πίεση. Ένας μακρύς κατακόρυφος σωλήνας περιέχει νερό σε ύψος h2 πάνω από το επίπεδο καπάκι της δεξαμενής, που επικοινωνεί με το νερό της δεξαμενής.
α. Να βρείτε το ύψος h2 του νερού στον κατακόρυφο σωλήνα  
β. Ανοίγουμε μια τρύπα στα τοιχώματα της δεξαμενής σε βάθος h1 κάτω από το καπάκι. Να βρείτε την αρχική ταχύτητα με την οποία εξέρχεται το νερό από την τρύπα.
γ. Σε ποιο ύψος θα σταθεροποιηθεί η στάθμη του νερού στον κατακόρυφο σωλήνα, όταν σταματήσει η ροή του από την τρύπα;
 (Τα μεγέθη Ρο , ho­, h1, η πυκνότητα ρ του νερού και η επιτάχυνση βαρύτητας g θεωρούνται γνωστά).

Απάντηση σε pdf: 

Απάντηση σε word


Σάββατο 11 Απριλίου 2020

Οριζόντια ράβδος στερεωμένη σε δύο ανόμοια ελατήρια


Μια ομοιόμορφη (ομογενής και ισοπαχής) ράβδος AB βάρους w και μήκους L = 20 cm αναρτάται από δύο κατακόρυφα ελατήρια Χ και Υ προσαρτημένα στα άκρα της Α και Β. Τα άνω άκρα των ελατηρίων είναι στερεωμένα σε οριζόντιο ακλόνητο στήριγμα. Όταν τα ελατήρια δεν είναι εκτεταμένα έχουν το ίδιο μήκος. Η σταθερά του ελατηρίου Χ είναι ίση με 3k και του Υ ίση με k.
α. Σε ποια απόσταση από το Α πρέπει να τοποθετήσουμε πάνω στη ράβδο ένα σώμα Σ βάρους 5W ώστε η ράβδος να ισορροπεί οριζόντια;
β. Αντικαθιστούμε το ελατήριο Χ με ένα άλλο παρόμοιο με το ελατήριο Υ και τοποθετούμε το σώμα Σ στο μέσον της ράβδου. Μετατοπίζουμε προς τα κάτω τη ράβδο, παράλληλα προς τη θέση ισορροπίας της, με το σώμα στην παραπάνω θέση, και αφήνουμε ελεύθερο το σύστημα ράβδος – σώμα Σ να εκτελέσει ταλάντωση. Αν w = 2 Ν και k = 150 N/m, να βρείτε το μέγιστο επιτρεπτό πλάτος της ταλάντωσης ώστε να μη χαθεί η επαφή του σώματος Σ με τη ράβδο.
γ. Να προσδιορίσετε στη θέση όπου χάνεται η επαφή της ράβδου με το σώμα τη συνολική ροπή των δυνάμεων που ενεργούν πάνω στη ράβδο, ως προς το άκρο της Α.
Απάντηση σε pdf: 
Απάντηση σε word: