Η φύση αγαπά την αλήθεια, και η αλήθεια της φύσης διεκδικεί το δικαίωμα να εκτίθεται μόνο σε όσους την ποθούν. Φ. Ντοστογιέφσκι

Παρασκευή 17 Δεκεμβρίου 2010

ΑΡΜΟΝΙΚΑ ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ, δώδεκα + 2 ερωτήσεις πολλαπλής επιλογής

  Ένα αρμονικό κύμα παράγεται από μια πηγή που ταλαντώνεται στην αρχή μιας χορδής και διαδίδεται προς τα δεξιά. Η αρχή της χορδής ταυτίζεται με την αρχή των αξόνων (0,0) και η πηγή ταλαντώνεται με εξίσωση ψ = 0,2ημπt  (S.I). Το σχήμα δείχνει ένα στιγμιότυπο αυτού του κύματος πάνω στη χορδή. Τη στιγμή που αντιστοιχεί στο στιγμιότυπο, η ταχύτητα ταλάντωσης της πηγής είναι:

α) 0,2 m/sec,           β) 0,5 m/sec, 
γ) 0,2π m/sec,         δ) -0,2π m/sec.

Τετάρτη 15 Δεκεμβρίου 2010

ΤΑΛΑΝΤΩΣΕΙΣ Videos

Για διάλειμμα μπορείτε να δείτε ορισμένα video-μαθήματα ταλαντώσεων. Κάτω από καθένα υπάρχει και η πηγή όπου μπορείτε να ανατρέξετε και να βρείτε πολλά σχετικά video. Απολαύστε τα!
  • Απλός αρμονικός ταλαντωτής. Πηγές: (α), (β)
  • Διατήρηση της μηχανικής ενέργειας στις α.α.τ. Πηγή: (γ)
  • Εξαναγκασμένος αρμονικός ταλαντωτης. Πηγή: (δ)
  • Ο ήχος της αρμονικής κίνησης. Πηγή: (ε) 
            Δείτε επίσης:

Σάββατο 11 Δεκεμβρίου 2010

ΔΥΟ  Επαναληπτικά  Διαγωνίσματα  40 min στις ταλαντώσεις 


 1ο Επαναληπτικό διαγώνισμα 40 min στις ταλαντώσεις.
   1. Το διάγραμμα του σχήματος παριστάνει την επιτάχυνση ενός σώματος, που εκτελεί α.α.τ, σε συνάρτηση με το χρόνο.
  Να χαρακτηρίσετε με Σ (αν είναι σωστή) ή με Λ (αν είναι λάθος) καθεμιά από τις παρακάτω προτάσεις.
α)  Στο σημείο Α αντιστοιχεί απομάκρυνση –Α,
β)  Στο σημείο Β του διαγράμματος η ταχύτητα είναι θετική,
γ)  Στο σημείο Γ η δύναμη επαναφοράς έχει μέγιστο μέτρο,
δ)  Στο σημείο Δ η απομάκρυνση είναι μέγιστη αρνητική,
ε)  Η ταχύτητα, στη διάρκεια που αντιστοιχεί μεταξύ των σημείων Γ και Δ, είναι θετική.  

Η συνέχεια εδώ ...  και η αναλυτική απάντηση εδώ ...

Αρμονικές ταλαντώσεις, ερωτήσεις του τύπου  “ΘΕΜΑ Β”
     ένας συντονισμός, μία φθίνουσα και έξι συνθέσεις.

1.  Κύκλωμα ηλεκτρικών ταλαντώσεων αποτελείται από πηνίο αυτεπαγωγής L = 1/π mH και πυκνωτή με χωρητικότητα που μπορεί να μεταβάλλεται από C1 = 0,1/π μF  έως C2 = 1,6/π μF. Το πηνίο του κυκλώματος βρίσκεται σε επαγωγική σύζευξη με το πηνίο μιας κεραίας που δέχεται κύματα από τρεις πομπούς με συχνότητες  f1 = 60 kHz,  f2 = 30 kHz και f3 = 10 kHz.
α) Με ποιόν ή ποιους από τους πομπούς αυτούς μπορεί να συντονιστεί το κύκλωμα;
  β) Αιτιολογείστε την απάντησή σας.
Δείτε όλες τις ερωτήσεις εδώ… και τις αναλυτικές απαντήσεις εδώ…

Σάββατο 4 Δεκεμβρίου 2010

ΔΙΩΡΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΦΘΙΝΟΥΣΕΣ ΚΑΙ ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΘΕΜΑ  Α
i) Ερωτήσεις πολλαπλής επιλογής.
(Στις ημιτελείς προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία τη συμπληρώνει σωστά).

Α1.  Η  αντιτιθέμενη δύναμη  F΄,  που  κάνει τη μέγιστη θετική απομάκρυνση  μιας  ταλάντωσης να  φθίνει εκθετικά με το χρόνο,  έχει πάντα φορά:
α)  ίδια με  τη φορά  της απομάκρυνσης του σώματος ,
β)  αντίθετη προς τη δύναμη  επαναφοράς της ταλάντωσης,
γ)  προς τις ακραίες θέσεις της ταλάντωσης,
δ)  αντίθετη προς τη φορά της ταχύτητας του  ταλαντωτή.

A2.   Σε μια φθίνουσα μηχανική ταλάντωση,  περιόδου Τ,  η μέγιστη  θετική απομάκρυνση μειώνεται με το χρόνο σύμφωνα με την εξίσωση: A  = Aο et.  Αν  τη χρονική στιγμή  tα =  kΤ,  το πλάτος  της  ταλάντωσης είναι  Αα ,  τότε τη χρονική στιγμή  t β =  t α + Τ,  το πλάτος της ταλάντωσης  θα  είναι: 
 α)  Αα eΛT,             β)  Αα e-2ΛT,           γ)  Αα eT,                 δ)  Αα eT
Δίνεται ότι k = 1, 2, 3,...
Η συνέχεια εδώ ...  και η αναλυτική απάντηση εδώ ...

Δευτέρα 29 Νοεμβρίου 2010

3o θεωρητικό σημείωμα.

Κατά το βέλτιστο δυνατό τρόπο …

  Ένα θεωρητικό κείμενο και μια εφαρμογή, με αφορμή τη δυσκολονόητη φράση (σελ. 23) του σχολικού βιβλίου:
  “ Κατά το συντονισμό η ενέργεια μεταφέρεται στο σύστημα κατά το βέλτιστο δυνατό τρόπο, γι αυτό το πλάτος της ταλάντωσης γίνεται μέγιστο”

 
Σας δίνεται η παρακάτω πληροφορία:
 «Ο συντονισμός, (με την έννοια ότι είναι μια κατάσταση μεγιστοποίησης του ρυθμού μεταφοράς ενέργειας από το διεγέρτη στο ταλαντούμενο σώμα, που συμβαίνει όταν ωδ = ωο), γίνεται καλύτερα κατανοητός αν σκεφτούμε πως, στην κατάσταση αυτή, η δύναμη του διεγέρτη πρέπει να είναι σε φάση με την ταχύτητα του σώματος που ταλαντώνεται. Δηλαδή, η Fδιεγ και η υ πρέπει να έχουν το ίδιο φο και το ίδιο ω, το ωο.
   Έτσι, ο διεγέρτης ασκεί την απαραίτητη δύναμη στη μάζα ακριβώς την κατάλληλη στιγμή και στην κατάλληλη θέση, με αποτέλεσμα η ενέργεια να μεταφέρεται στη μάζα με το βέλτιστο δυνατό τρόπο …. 
  Για παράδειγμα: είναι γνωστό ότι όταν x = 0 και η μάζα κινείται προς τη θετική κατεύθυνση, τότε υ = max.  Πρέπει, για να’ χουμε συντονισμό, αυτή τη χρονική στιγμή, η δύναμη του διεγέρτη να πάρει κι αυτή τη μέγιστη θετική τιμή της, ώστε να εξουδετερώσει τη δύναμη απόσβεσης, η οποία την ίδια στιγμή έχει μέγιστο μέτρο αλλά αρνητική αλγεβρική τιμή. Στις ακραίες θέσεις, όπου η ταχύτητα μηδενίζεται κι αλλάζει κατεύθυνση, πρέπει και η δύναμη του διεγέρτη να μηδενίζεται και να αλλάζει ταυτόχρονα και κατά τον ίδιο τρόπο κατεύθυνση».

  Έστω, λοιπόν, μια εξαναγκασμένη, με απόσβεση, μηχανική ταλάντωση, στην οποία η δύναμη του διεγέρτη παρέχεται από τη σχέση: F = Fo ημ(40πt)    (S.I) .
  α)  Πόση πρέπει να είναι η ιδιοσυχνότητα του ταλαντούμενου συστήματος ώστε η ενέργεια να μεταφέρεται από το διεγέρτη στο σύστημα με το βέλτιστο δυνατό τρόπο;
  β)  Δίνεται ότι, με τη δράση της παραπάνω διεγείρουσας δύναμης, το πλάτος της ταλάντωσης γίνεται 10 cm.  Να γράψετε τις εξισώσεις της ταχύτητας και της απομάκρυνσης με το χρόνο στην κατάσταση που περιγράφεται στο προηγούμενο ερώτημα.
   
    Aπ.  α) 20 Ηz,    β) πρέπει να θυμηθείτε ότι η φάση της ταχύτητας είναι μεγαλύτερη από τη φάση της απομάκρυνσης κατά  π/2,  οπότε:  υ = Αωημ40πtx =0,1ημ(40πt – π/2),   (S.I)

Τετάρτη 24 Νοεμβρίου 2010

ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ - ΕΝΑ ΔΙΩΡΟ ΔΙΑΓΩΝΙΣΜΑ

ΘΕΜΑ  Α
i) Ερωτήσεις πολλαπλής επιλογής.
(Στις ημιτελείς προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία τη συμπληρώνει σωστά).

A1. Σ’ ένα κύκλωμα LC που εκτελεί αμείωτη ηλεκτρική ταλάντωση, το φορτίο του πυκνωτή μεταβάλλεται σύμφωνα με τη σχέση  q = Qσυνωt :
α.  η μέγιστη ένταση του ηλεκτρικού ρεύματος είναι ω2Q.
β.  η μέγιστη τάση από αυτεπαγωγή στα άκρα του πηνίου είναι  Lω2Q.
γ.  ο μέγιστος ρυθμός μεταβολής της έντασης του ρεύματος στο κύκλωμα είναι ωQ.
δ.  η μέγιστη ηλεκτρική ενέργεια του πυκνωτή έχει τιμή  ½ Lω2Q.
Δείτε τη συνέχεια εδώ και τις απαντήσεις εδώ