Η φύση αγαπά την αλήθεια, και η αλήθεια της φύσης διεκδικεί το δικαίωμα να εκτίθεται μόνο σε όσους την ποθούν. Φ. Ντοστογιέφσκι

Τρίτη 10 Νοεμβρίου 2020

Ένα επιτραπέζιο παιχνίδι

 


Οι σανίδες Α και Β του σχήματος κινούνται μαζί, η μια ακριβώς πάνω στην άλλη, με κοινή ταχύτητα υ, κατά μήκος μιας λείας οριζόντιας επιφάνειας. Κάποια στιγμή η σανίδα Β συγκρούεται πλαστικά και μετωπικά με μια ακίνητη όμοια σανίδα C. Μετά τη σύγκρουση, οι σανίδες B και C κινούνται μαζί, και η σανίδα Α γλιστρά στην πάνω πλευρά της C και σταματά την κίνησή της σε σχέση με τη C στη θέση που φαίνεται στο σχήμα.

Ποιο είναι το μήκος κάθε σανίδας;

Και οι τρεις σανίδες έχουν την ίδια μάζα m, το ίδιο μήκος L και ίδιο σχήμα. Μεταξύ των Α και Β δεν υπάρχει τριβή, ο συντελεστής τριβής ολισθήσεως μεταξύ των σανίδων A και C είναι μ. Η επιτάχυνση g λόγω βαρύτητας είναι γνωστή.  

Η Λύση σε pdf:

Η Λύση σε word:



Δευτέρα 9 Νοεμβρίου 2020

Ελαστική μετωπική κρούση δύο σφαιρών με αρχική ταχύτητα, όπου τελικά η μια ακινητοποιείται (δύο περιπτώσεις)

 Δύο λείες σφαίρες Α και Β με μάζες mΑ και mΒ, που κινούνται σε λείο οριζόντιο επίπεδο με ταχύτητες υΑ = 6 m/s και υΒ = 1,5 m/s, αντίστοιχα, συγκρούονται μετωπικά και ελαστικά.

Α. Να βρείτε το λόγο mΑ/mΒ των μαζών των  δύο σφαιρών ώστε η σφαίρα Α μετά τη σύγκρουση να ακινητοποιηθεί αν οι ταχύτητες των δύο σφαιρών:


 α. έχουν την ίδια κατεύθυνση (ομόρροπες)

 

β. έχουν αντίθετη κατεύθυνση (αντίρροπες)


Β. Να υπολογίσετε την ταχύτητα της σφαίρας Β και στις δύο περιπτώσεις.

Απάντηση: 

Α. α. 0,5,  β. 1,5.    Β. 4,5 m/s,  7,5 m/s

Η Λύση σε pdf:


Παρασκευή 11 Σεπτεμβρίου 2020

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2020 ΣΤΗ ΦΥΣΙΚΗ

         ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2020 ΣΤΗ ΦΥΣΙΚΗ


                            Students in virus epicentre to sit national high school exam early next  month

                                                        Φυσική (Νέο σύστημα)

                                                           Φυσική (Παλαιό σύστημα)  

                                                           Φυσική Ομογενών (Νέο σύστημα)

                                                Φυσική Ομογενών (Παλαιό σύστημα)

                                       Οι λύσεις των θεμάτων στο νέο σύστημα 

                            Οι λύσεις των θεμάτων στο παλαιό σύστημα

                            Οι λύσεις των θεμάτων για τους ομογενείς 

                          Τα σχόλια των συναδέλφων στο Υλικονετ

Δευτέρα 22 Ιουνίου 2020

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ 2020


Για τα θέματα Φυσικής Ημερησίων και Εσπερινών πατήστε εδώ.

Για τα θέματα ΦΥΣΙΚΗΣ (Ημερήσια) περσινή ύλη, πατήστε εδώ.

Για τα θέματα ΦΥΣΙΚΗΣ (Εσπερινά) περσινή ύλη, πατήστε εδώ.

Σύντομες και αναλυτικές απαντήσεις:

Κυριακή 14 Ιουνίου 2020

Δύο σανίδες κι ένα σχοινί (ένα εύκολο-δύσκολο θέμα)

[Σε ένα σύστημα σωμάτων σε ισορροπία, η συνθήκη ΣFεξ = 0 και Στεξ = 0 ισχύει και για το σύστημα και για κάθε σώμα ξεχωριστά. Πρέπει να εφαρμόζεται μετά από τον προσεκτικό σχεδιασμό των δυνάμεων σε κάθε σώμα ξεχωριστά].

Δύο όμοιες, ορθογώνιες, ομογενείς σανίδες, η καθεμιά μάζας m και μήκους L, συνδέονται με έναν μεντεσέ Ο στα άνω άκρα τους. Η καθεμιά σχηματίζει γωνία θ με την κατακόρυφο. Ένα σχοινί αμελητέας μάζας συνδέει το κάτω άκρο της δεξιάς σανίδας με την αριστερή σανίδα και είναι κάθετο σε αυτήν, όπως φαίνεται στο σχήμα. Ολόκληρη η διάταξη  βρίσκεται σε ένα οριζόντιο δάπεδο χωρίς τριβές.
α) Να βρείτε τη δύναμη που ασκεί το δάπεδο στήριξης σε κάθε σανίδα.
β) Πόση είναι η τάση στο νήμα;
γ) Ποια δύναμη ασκεί κάθε σανίδα στην άλλη στο πάνω άκρο της μέσω του μεντεσέ;  
H επιτάχυνση της βαρύτητας g θεωρείται γνωστή. 

[Πηγή: David Morin Introduction to classical mechanics]
                  Η Απάντηση: