Η φύση αγαπά την αλήθεια, και η αλήθεια της φύσης διεκδικεί το δικαίωμα να εκτίθεται μόνο σε όσους την ποθούν. Φ. Ντοστογιέφσκι

Κυριακή 2 Σεπτεμβρίου 2012

Α.Α.Τ  ΣΥΣΤΗΜΑΤΟΣ “ΚΑΤΑΚΟΡΥΦΟ ΕΛΑΤΗΡΙΟ – ΜΑΖΑ” ΜΕΡΟΣ 4ο - ΑΣΚΗΣΕΙΣ


Διαγράμματα και συναρτήσεις  Uελx,   Uελt, σε σύστημα κατακόρυφο ελατήριο – μάζα δυσκολεύουν τους μαθητές. Γι αυτό σκέφτηκα τα τρία πρώτα μέρη της τελευταίας, σχετικής με το θέμα εργασίας,  να τα συνοδεύσω με ένα τέταρτο μέρος που να περιλαμβάνει δύο εφαρμογές. Είναι δύο ασκήσεις με δυσκολία λίγο πάνω του μετρίου, που η λύση τους θα ωφελήσει, κατά τη γνώμη μου, πολύ τους αγαπητούς μαθητές μας.
Αργότερα, θα ακολουθήσουν ασκήσεις όπου θα ζητούνται οι συναρτήσεις Fελx,   Fελt

1.  Όλες οι δυναμικές ενέργειες μαζί

Ένα σώμα μάζας m= 2 kgr είναι στερεωμένο στο κάτω άκρο ενός κατακόρυφου ελατηρίου του οποίου το πάνω άκρο συγκρατείται από ακλόνητο στήριγμα. Ανεβάζουμε το σώμα μέχρι μια θέση Β πάνω από τη θέση ισορροπίας του και κάποια στιγμή το αφήνουμε ελεύθερο. Έτσι αρχίζει να εκτελεί α.α.τ., στη διάρκεια της οποίας η δυναμική ενέργεια του ελατηρίου, Uελ, μεταβάλλεται μεταξύ των τιμών 0 και 4 J, ενώ η παραμόρφωσή του μεταξύ των τιμών 0 και 0,2 m, όπως φαίνεται στο διάγραμμα. 

Α. Πόσο είναι το πλάτος, η ενέργεια και η γωνιακή συχνότητα της ταλάντωσης;

Β. Σε ποια θέση είναι Uελ = Uταλ;  Αν το επίπεδο μηδενικής βαρυτικής δυναμικής ενέργειας διέρχεται από τη θέση αυτή, να δείξετε ότι για οποιαδήποτε απομάκρυνση x του σώματος από τη θέση ισορροπίας ισχύει:

                                             Uελατ + Uβαρ = Uταλ = (1/2)kx2
                                          
Γ. Να γίνουν τα διαγράμματα Uταλ - x και Κ – x σε κοινό σύστημα ορθογωνίων αξόνων ενέργειας – απομάκρυνσης και να υπολογιστούν οι ρυθμοί μεταβολής των ενεργειών αυτών τη στιγμή που το σώμα διέρχεται από τη θέση όπου Uταλ = Κ κινούμενο πάνω από τη θέση ισορροπίας και κατευθυνόμενο προς την πάνω ακραία θέση Β.

Δ. Αν ως χρονική στιγμή t = 0 θεωρήσουμε κάποια στιγμή που το σώμα διέρχεται από τη θέση όπου η δυναμική ενέργεια του ελατηρίου (Uελ) είναι ίση με την ενέργεια της ταλάντωσης  (Εταλ) και ελαττώνεται, να εξάγετε την εξίσωση απομάκρυνσης – χρόνου (x-t).
Δίνεται: g = 10 m/s2



2.  Από την παραμόρφωση ελατηρίου στην απομάκρυνση ταλάντωσης κι αντίστροφα. Μια άσκηση για εξάσκηση.

Το κάτω άκρο ενός κατακόρυφου ιδανικού ελατηρίου είναι στερεωμένο σε οριζόντιο βάθρο ενώ στο πάνω άκρο του είναι δεμένο ένα σώμα που εκτελεί απλή αρμονική ταλάντωση με θετική φορά προς τα πάνω. Στο διάγραμμα βλέπουμε πώς μεταβάλλεται η δυναμική ενέργεια ελαστικότητας του ελατηρίου σε συνάρτηση με την απομάκρυνση του σώματος από τη θέση ισορροπίας του.
Α. Να βρείτε τη σταθερά του ελατηρίου και την περίοδο της ταλάντωσης.
Β. Με τι ρυθμό μεταβάλλεται η δυναμική ε­νέργεια, λόγω παραμόρφωσης, του ελατηρίου τη στιγμή που το σώμα διέρχεται από τη θέση ισορροπίας του κινού­μενο προς τα θετικά;
Γ. Αν τη χρονική στιγμή t = 0 η δυναμική ενέργεια του ελατηρίου είναι ίση με τη μέγιστη κινητική ενέργεια του σώματος και αυξάνεται, ποια είναι η σχέση της παραμόρφωσης του ελατηρίου σε συνάρτηση με το χρόνο; 
Δίνεται: g = 10 m/sec2.

Πέμπτη 14 Ιουνίου 2012

 ΟΙ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ


Οι Απαντήσεις στα Θέματα των ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2012 στο μάθημα της ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ.


  • Των ΗΜΕΡΗΣΙΩΝ (εδώ)
  • Των ΕΣΠΕΡΙΝΩΝ (εδώ).

ΤΑ ΘΕΜΑΤΑ ΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ

Τα Θέματα των Επαναληπτικών Πανελληνίων Εξετάσεων 2012 στη Φυσική Κατεύθυνσης,

  • Για τα Ημερήσια, εδώ  
  • Για τα Εσπερινά, εδώ.
  • Σχόλια των συναδέλφων του Ylikonet για τα θέματα εδώ.