ΜΕΡΟΣ 2ο
Τι θα λέγατε τώρα αν σας καλούσαν να αντιμετωπίσετε αντίστροφα μια τέτοια περίπτωση, ελεύθερης πτώσης- πλαστικής κρούσης - α.α.τ. με φ0 = 5π/6;
Στο χώρο αυτό, οι μαθητές της Γ Λυκείου αλλά και οι συνάδελφοι εκπαιδευτικοί θα βρουν μια σειρά από ερωτήσεις, πρωτότυπες ασκήσεις και προβλήματα στο πνεύμα των πανελλαδικών εξετάσεων. Το υλικό δημιουργήθηκε μέσα από χρόνια δουλειάς με μαθητές και συναδέλφους. μπορεί όμως ακόμη να έχει κάποιες ατέλειες. Kάθε καλοπροαίρετη παρατήρηση ή διόρθωση δεν είναι τυπικό σχόλιο· είναι μια μικρή, ουσιαστική συμβολή σε μια δουλειά που εξακολουθεί να εξελίσσεται μαζί σας.
[Eξάσκηση στη χρήση των εξισώσεων των απλών αρμονικών ταλαντώσεων]
Ένα απλό μοντέλο πυκνομέτρου (οργάνου μέτρησης της πυκνότητας των υγρών) μπορεί να κατασκευαστεί με τη βοήθεια ενός αριθμημένου ξύλινου χάρακα που στο ένα άκρο του έχουμε στερεώσει ένα μικρό βάρος. Έτσι ο χάρακας θα στέκεται κατακόρυφος όταν βυθίζεται μέσα σε ένα υγρό. Μετρώντας το βάθος όπου ισορροπεί ο χάρακας μπορούμε να έχουμε μια εκτίμηση για την πυκνότητα του υγρού.
Στο σχήμα φαίνονται οι ακραίες θέσεις μιας ταλάντωσης
που κάνει ένα τέτοιο υδρόμετρο και η θέση ηρεμίας.
A. Το πλάτος της ταλάντωσης είναι:
α. 5 mm, β.
17 mm, γ. 32 mm, δ. 37
B. Το μέτρο της μέγιστης ταχύτητας είναι:
α. 0,032π m/s, β. 0,017π m/s, γ. 0.005π m/s, δ. 0,037π m/s
Δείτε:

“πάντρεμα” αυτών των δύο κινήσεων δεν παρουσίαζε κανένα πρακτικό ενδιαφέρον.