Η φύση αγαπά την αλήθεια, και η αλήθεια της φύσης διεκδικεί το δικαίωμα να εκτίθεται μόνο σε όσους την ποθούν. Φ. Ντοστογιέφσκι

Σάββατο 20 Οκτωβρίου 2012

Ευθύγραμμη ομαλά μεταβαλλόμενη κίνηση αντιμέτωπη με αρμονικά μεταβαλλόμενη κίνηση



Στο χώρο, όπου βρίσκονται τα σώματα του σχήματος, υπάρχει ομογενές ηλεκτρικό πεδίο έντασης Ε. Το σφαιρίδιο Σ2 είναι ηλεκτρικά φορτισμένο με φορτίο q και αρχικά το συγκρατούμε ακίνητο σε απόσταση ℓ από το αφόρτιστο σώμα Σ1 που ισορροπεί στερεωμένο στο αριστερό άκρο ενός οριζόντιου ελατηρίου όπως στο σχήμα. Το οριζόντιο δάπεδο είναι λείο.
Μετακινούμε το Σ1 προς τα δεξιά κατά x1 = 0,2 m και το αφήνουμε ελεύθερο. Την ίδια στιγμή αφήνουμε ελεύθερο και το Σ2.

Α. Να υπολογίσετε την απόσταση ℓ ώστε η συνάντηση των σωμάτων να γίνει στη θέση ισορροπίας του Σ1.

Β. Αν δίνεται ότι μετά την κρούση τα δύο σώματα ξαναγυρίζουν στις αρχικές τους θέσεις με μηδενικές ταχύτητες, να υπολογίσετε την m2.

Γ. Να εξηγήσετε ότι η κρούση των σωμάτων είναι  ελαστική και να δείξετε ότι θα φτάσουν στις αρχικές τους θέσεις ταυτόχρονα.

Δ. Αν σε ένα ιδανικό κύκλωμα LC ...

Δείτε:

Σάββατο 13 Οκτωβρίου 2012

ΔΙΕΓΕΡΣΗ ΣΕ Α.Α.Τ. ΣΥΣΤΗΜΑΤΟΣ ΕΛΑΤΗΡΙΟ – ΣΩΜΑ ΑΠΟ ΜΕΤΑΒΛΗΤΗ ΕΞΩΤΕΡΙΚΗ ΔΥΝΑΜΗ


ΙΙ. Γενική περίπτωση  
Το σώμα Σ ισορροπεί αρχικά στη θέση I που φαίνεται στο σχήμα. Το ελατήριο είναι ακλόνητα στερεωμένο στο έδαφος. Κάποια στιγμή (t = 0) εφαρμόζουμε πάνω του μια κατακόρυφη προς τα πάνω δύναμη F, όπως στο σχήμα. Το μέτρο της δύναμης  μεταβάλλεται σύμφωνα με τη σχέση: F = (10/3)y +10 (το F σε N και το y σε m), όπου y η απόσταση του σώματος από τη θέση ισορροπίας Ι. Τo σώμα αρχίζει να ανεβαίνει.
Α. Να δείξετε ότι υπάρχει μια θέση I΄, ψηλότερα από τη Ι, όπου η συνισταμένη όλων των δυνάμεων, συμπεριλαμβανομένης και της F, είναι μηδέν και ότι η θέση αυτή είναι το κέντρο μιας α.α.τ. που θα εκτελέσει το σώμα.
Β. Ποια χρονική στιγμή το σώμα θα αποκτήσει για πρώτη φορά μέγιστη κινητική ενέργεια και πόση είναι αυτή;
Γ. Κάποια στιγμή διακόπτουμε την εφαρμογή της F. Πόσο είναι το πλάτος της ταλάντωσης που θα εκτελέσει στη συνέχεια το σώμα Σ αν η δύναμη F πάψει να εφαρμόζεται τη στιγμή που το σώμα διέρχεται από:
i. Tην πάνω ακραία θέση του
ii. Τη θέση Φ
iii. Τη θέση Ι
Δίνονται: m = 1 kgr, g = 10 m/s2, k = 40/3 N/m
Περισσότερα για το παραπάνω πρόβλημα:

 ΔΙΕΓΕΡΣΗ ΣΕ Α.Α.Τ. ΣΥΣΤΗΜΑΤΟΣ ΕΛΑΤΗΡΙΟ – ΣΩΜΑ ΑΠΟ ΜΕΤΑΒΛΗΤΗ ΕΞΩΤΕΡΙΚΗ ΔΥΝΑΜΗ


Ειδική περίπτωση

  Το σώμα Σ ισορροπεί αρχικά στη θέση I κρεμασμένο από ένα κατακόρυφο ελατήριο, όπως φαίνεται στο σχήμα. Κάποια στιγμή εφαρμόζουμε πάνω του μια κατακόρυφη με φορά προς τα κάτω δύναμη F, που το μέτρο της μεταβάλλεται σύμφωνα με τη σχέση:  F = (40/3)y +10 (το F σε N και το y σε m), όπου y η απόσταση του σώματος από τη θέση ισορροπίας. Έπειτα από 1sec καταργούμε την F.
Α. Δείξτε ότι, στη διάρκεια που στο σώμα ενεργεί η δύναμη F, εκτελεί ευθύγραμμη ομαλά επιταχυνόμενη κίνηση. ενώ μετά την κατάργησή της θα κάνει α.α.τ.
Β. Προσδιορίστε τα μεγέθη της ταλάντωσης: ω, Αφο.
(Για τα διανυσματικά μεγέθη της α.α.τ. θεωρείστε θετική την προς τα κάτω φορά. Ως αρχή μέτρησης χρόνου θεωρείστε τη στιγμή που το σύστημα ξεκινά να ταλαντώνεται).
Δίνονται: m = 10 kgrg = 10 m/s2k = 40/3 N/m

Δείτε:

Σάββατο 29 Σεπτεμβρίου 2012

ΕΠΙΔΡΑΣΗ ΜΙΑΣ ΠΡΟΣΘΕΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΔΥΝΑΜΗΣ ΣΕ ΜΙΑ Α.Α.Τ.


·      Πώς μια πρόσθετη μεταβλητή δύναμη επηρεάζει την α.α.τ. συστήματος “κατακόρυφο ελατήριο – μάζα”
Το κάτω άκρο ενός κατακόρυφου ελατηρίου σταθεράς k1 είναι ακλόνητα στερεωμένο στο δάπεδο ενώ στο πάνω άκρο έχουμε δέσει ένα σώμα μπάζας m = 1 kgr το οποίο εκτελεί α.α.τ. με πλάτος Α = 0,1 m και με συχνότητα   =  5/π  Hz. Κάποια στιγμή, συγκεκριμένα όταν το σώμα διέρχεται από το ανώτερο σημείο της τροχιάς του (αλλιώς, πάνω ακραία θέση ή Π.Α) αρχίζει να ενεργεί πάνω του, με φορά προς τα πάνω μια επιπλέον κατακόρυφη μεταβλητή δύναμη μέτρου F2 = 300y, όπου y η απόσταση του σώματος από το σημείο αυτό.
Α. Να  δείξετε ότι το σώμα θα εξακολουθήσει να κάνει α.α.τ. και να προσδιορίσετε το νέο πλάτος και τη νέα της συχνότητα.
Β. Πόση είναι η μέγιστη κινητική ενέργεια Κ΄μεγ της νέας ταλάντωσης;
Γ. Με αρχή μέτρησης του χρόνου (t = 0) τη στιγμή που αρχίζει να δρα πάνω στο σώμα η δύναμη F2 να εξάγετε τη σχέση που συνδέει την F2 με το χρόνο.
Δίνεται g = 10 m/s2.

Περισσότερα:

 Εφαρμόστε τα προηγούμενα στις δύο παρακάτω παραλλαγές:





1η. Πώς θα λύνατε την παραπάνω άσκηση αν η δύναμη F2 είχε φορά προς τα κάτω κι άρχιζε να ενεργεί πάνω στο σώμα τη στιγμή που διέρχεται από την κάτω ακραία θέση (Κ.Α) της αρχικής του ταλάντωσης; (Θεωρείστε το y ως την απόσταση από την Κ.Α).












2η. Πώς θα λύνατε την παραπάνω άσκηση αν η δύναμη F2 είχε φορά προς τα κάτω κι άρχιζε να εφαρμόζεται πάνω στο σώμα τη στιγμή που διέρχεται από την θέση ισορροπίας (Θ.Ι) ανεβαίνοντας; (Θεωρείστε το y ως την απόσταση από την Θ.Ι).









Τρίτη 25 Σεπτεμβρίου 2012

ΠΩΣ ΜΙΑ ΣΤΑΘΕΡΗ ΔΥΝΑΜΗ ΜΠΟΡΕΙ ΝΑ ΜΕΤΑΤΡΕΨΕΙ ΣΕ Α.Α.Τ. ΜΙΑ ΠΕΡΙΟΔΙΚΗ ΚΙΝΗΣΗ ΠΟΥ ΔΕΝ ΕΙΝΑΙ Α.Α.Τ.



Όπως φαίνεται στο σχήμα, δύο κατακόρυφα ελατήρια με σταθερές k1 = 40 N/m και k2 = 50 N/m, έχουν το ένα άκρο τους στερεωμένο σε ακλόνητο στήριγμα και το άλλο άκρο τους προσδεμένο σ’ ένα σώμα Σ μάζας m = 0,1 kgr, που είναι φορτισμένο με ηλεκτρικό φορτίο +q. Οι άξονες των ελατηρίων συμπίπτουν.
Όταν το σώμα ισορροπεί, το κάτω ελατήριο έχει το φυσικό του μήκος.

Α. Να αποδείξετε ότι η κίνηση που θα εκτελέσει το σώμα, αν το εκτρέψουμε κατακόρυφα από τη θέση ισορροπίας του κι έπειτα το αφήσουμε ελεύθερο, είναι απλή αρμονική ταλάντωση και να υπολογίσετε την περίοδό της.
Β. Αποσυνδέουμε το κάτω ελατήριο από το σώμα. Έτσι όταν το σώμα ισορροπεί, το πάνω άκρο του ελατηρίου αυτού απλώς ακουμπά στο σώμα. Στη συνέχεια ανεβάζουμε κατακόρυφα το σώμα κατά 0,025 m, προκαλώντας μια αντίστοιχη μείωση μήκους στο πάνω ελατήριο. Τη στιγμή t = 0 sec αφήνουμε το σώμα.
Β1. Να εξηγείστε γιατί η κίνηση που θα κάνει το σώμα δεν είναι απλή αρμονική ταλάντωση και να υπολογίσετε την απόσταση των δύο ακραίων θέσεων ανάμεσα στις οποίες κινείται.
Β2. Όταν το σώμα βρίσκεται σε μια από τις ακραίες θέσεις του εμφανίζεται στο χώρο της ταλάντωσης ένα κατακόρυφο ομογενές ηλεκτρικό πεδίο που ασκεί πάνω του σταθερή δύναμη F. Ποιά πρέπει να είναι η φορά της δύναμης F και ποιό το ελάχιστο μέτρο της ώστε το σώμα να κάνει απλή αρμονική ταλάντωση; Να διακρίνετε δύο περιπτώσεις, μια για κάθε ακραία θέση.
Β3. Πόση είναι η περίοδος της ταλάντωσης σε κάθε περίπτωση;
Δίνεται: g =10  m/sec2, και ότι κατά την κίνηση του σώματος δεν έχουμε απώλειες ενέργειας.


Δείτε:

Άλλες Ασκήσεις με δύο ελατήρια 

  1. Δύο ελατήρια και μια πλάγια ελαστική κρούση  
  2. Σώμα εν μέσω δύο ελατηρίων και μια αποκόλληση
  3. Άλλη μια αποκόλληση ... πιο δύσκολη
  4. Ένα σώμα -  δύο ελατήρια σε πλάγιο επίπεδο (Η άσκηση δημοσιεύτηκε στις 12/10/2010. Κάλυπτε τα μισό ΘΕΜΑ Δ των Πανελληνίων 2012).

Δευτέρα 24 Σεπτεμβρίου 2012


ΔΥΝΑΜΕΙΣ ΠΟΥ ΦΕΡΝΟΥΝ ΤΑ ΠΑΝΩ  … ΚΑΤΩ  ΚΑΙ  ΤΑ ΚΑΤΩ … ΠΑΝΩ ΣΤΙΣ Α.Α.Τ.


Πως μια δύναμη μπορεί να φέρει τα πάνω … κάτω σε μια α.α.τ.

Το σώμα Σ αρχικά εκτελεί α.α.τ. με γνωστά τα παρακάτω μεγέθη:
Μάζα m = 1 kgr, σταθερά ελατηρίου k = 100 N/m, πλάτος A = 4 cm και  g = 10 m/s2 .
Έστω Π1 η πάνω ακραία θέση και Κ1 η κάτω ακραία θέση της ταλάντωσης. Κάποια στιγμή, όταν το σώμα διέρχεται από την πάνω ακραία θέση Π1, εφαρμόζουμε πάνω του μια κατακόρυφη σταθερή δύναμη F.
Α. Να προσδιορίσετε αυτή τη δύναμη (μέτρο- φορά) ώστε το σώμα να παραμείνει ακίνητο.
Β. Δείξτε ότι αν στην ίδια θέση, αντί της F, εφαρμόσουμε στο σώμα μια δύναμη F΄ μεγαλύτερη από την F και με φορά προς τα πάνω, τότε το σώμα θα εκτελέσει μια νέα α.α.τ. στην οποία η θέση Π1 θα είναι κάτω ακραία θέση.
Γ. Πόσο πρέπει να είναι το μέτρο της F΄ ώστε η νέα ταλάντωση να έχει πλάτος ίδιο με της παλιάς;

 Περισσότερα:

 Δείτε και τις εξής παραλλαγές των παραπάνω ασκήσεων: