Η φύση αγαπά την αλήθεια, και η αλήθεια της φύσης διεκδικεί το δικαίωμα να εκτίθεται μόνο σε όσους την ποθούν. Φ. Ντοστογιέφσκι

Εμφάνιση αναρτήσεων με ετικέτα 1.6 Θεωρητικά σημειώματα. Εμφάνιση όλων των αναρτήσεων
Εμφάνιση αναρτήσεων με ετικέτα 1.6 Θεωρητικά σημειώματα. Εμφάνιση όλων των αναρτήσεων

Παρασκευή 2 Νοεμβρίου 2012

Η ΤΑΣΗ ΝΗΜΑΤΟΣ ΚΑΙ ΤΟ ΦΥΣΙΚΟ ΜΗΚΟΣ ΕΛΑΤΗΡΙΟΥ -1ο


1.  ΣΩΜΑ ΔΕΜΕΝΟ ΜΕ ΣΧΟΙΝΙ ΣΤΟ ΑΚΡΟ ΚΑΤΑΚΟΡΥΦΟΥ ΕΛΑΤΗΡΙΟΥ

Στο σχήμα φαίνεται ένα κατακόρυφο αβαρές ελατήριο στερεωμένο με το ένα άκρο του σε μια οροφή. Αρχικά το ελατήριο έχει το φυσικό του μήκος, όταν όμως με τη βοήθεια ενός σχοινιού κρεμάσουμε στο κάτω άκρο του ένα σώμα μάζας m και το αφήνουμε σιγά - σιγά να ισορροπήσει στη θέση Θ.Ι του σχήματος, το μήκος του θα αυξηθεί κατά Δℓ.
Απομακρύνουμε το σώμα κατά d προς τα κάτω και το αφήνουμε ελεύθερο. Πόση είναι η μέγιστη δυνατή τιμή του d για την οποία το σχοινί διατηρείται διαρκώς τεντωμένο; Θεωρείστε το σχοινί αβαρές και μη εκτατό.

Σκεφτείτε, προσπαθήστε κι ύστερα …

Τρίτη 24 Ιανουαρίου 2012

Η ΣΥΜΒΟΛΗ ΤΗΣ ΟΛΙΚΗΣ ΕΣΩΤΕΡΙΚΗΣ ΑΝΑΚΛΑΣΗΣ ΣΤΗ ΛΑΜΨΗ ΤΩΝ ΔΙΑΜΑΝΤΙΩΝ

"H μικρή κρίσιμη γωνία είναι ο λόγος που ένα κατεργασμένο διαμάντι λαμποκοπά στο φως." ΣΧΟΛ. ΒΙΒΛΙΟ σελ. 69
Από όλους τους δυνατούς συνδυασμούς  υλικών που έχουν μεταξύ τους μια σαφή διαχωριστική επιφάνεια, ο συνδυασμός διαμαντιού - αέρα παρουσιάζει μια από τις μικρότερες  τιμές  του πηλίκου nb/na  και κατ’ επέκταση μια αρκετά μικρή κρίσιμη γωνία. Αυτή η ιδιομορφία του διαμαντιού είναι ο λόγος που κάνει τις κατεργασμένες διαμαντόπετρες(1) να λάμπουν εκθαμβωτικά. Λόγω της μικρής κρίσιμης γωνίας, το φώς εύκολα  παγιδεύεται μέσα στο διαμάντι. Οι περισσότερες ακτίνες που θα εισχωρήσουν σ’ αυτό θα προσπαθήσουν να βγουν στον αέρα προσπίπτοντας στη διαχωριστική επιφάνεια διαμαντιού - αέρα με γωνία μεγαλύτερη από την κρίσιμη. Έτσι, όταν εισχωρήσει φώς μέσα  στο διαμάντι, το πιθανότερο είναι να υποστεί ένα μεγάλο αριθμό ολικών εσωτερικών ανακλάσεων προτού εξέλθει πάλι στον αέρα. Το αποτέλεσμα είναι πιο εντυπωσιακό όταν το ακατέργαστο διαμάντι υποστεί μια επιδέξια σχεδιασμένη κοπή.
Εάν το διαμάντι κοπεί σωστά, τότε το φως που εισέρχεται από την κορυφή του παθαίνει ολικές εσωτερικές ανακλάσεις, εγκλωβίζεται μέσα στον κρύσταλλο και τελικά οδηγείται ξανά στην κορυφή της πέτρας αποδίδοντας τη μέγιστη δυνατή λάμψη (σχήμα α).
Εάν η κοπή(2) των διαμαντιών είναι πολύ ρηχή (σχήμα β) ή αρκετά βαθιά (σχήμα γ), χάνουν μέρος της λάμψης τους, η οποία διασκορπίζεται στο κάτω μέρος (σχήμα β) ή στις πλευρικές επιφάνειες του διαμαντιού (σχήμα γ. Συνεπώς το πετράδι που δεν έχει τις σωστές αναλογίες είναι λιγότερο λαμπερό και εντυπωσιακό αλλά και όπως είναι φυσικό, χαμηλότερης αξίας.
 1.  Στη φυσική τους κατάσταση, τα διαμάντια έχουν κρυμμένη την ομορφιά τους. Παρ' όλο που η φύση προσδιορίζει το χρώμα την καθαρότητα και τα καράτια τους (5 καράτια = 1 gr), χρειάζεται ωστόσο το χέρι ενός ειδικού τεχνίτη ο οποίος με την κατάλληλη κοπή τους θα δημιουργήσει συγκεκριμένες γωνίες και αναλογίες ώστε να βελτιώσει τις οπτικές ιδιότητες στο εσωτερικό των διαμαντιών.
2.  Η λέξη κοπή αναφέρεται και στο σχήμα του διαμαντιού. Οι επτά δημοφιλέστερες κοπές διαμαντιού είναι: Round brilliant, marquise, pear, emerald-cut, princess, oval & heart.

Παρασκευή 25 Νοεμβρίου 2011

ΚΙΝΗΣΗ ΜΕ ΔΙΑΚΡΟΤΗΜΑΤΑ

Όταν από τη σύνθεση δύο απλών αρμονικών ταλαντώσεων προκύπτει κίνηση με διακροτήματα

Έστω ότι ένας ταλαντωτής μετέχει ταυτόχρονα στις ταλαντώσεις
ψ1= 0,5ημω1t
ψ2= 0,5ημω2t
με τα ω1 και ω2 να διαφέρουν λίγο μεταξύ τους κατά ω1 – ω2 = δ
α) Με τη βοήθεια των παραπάνω διαγραμμάτων (α) και (β) που παριστάνουν, αντίστοιχα, τη διαφορά φάσης των δύο ταλαντώσεων σε συνάρτηση με το χρόνο και την εξέλιξη της φάσης της πρώτης ταλάντωσης με το χρόνο, να εξάγετε την εξίσωση της κίνησης του ταλαντωτή και να δείξετε ότι αποτελείται από δύο παράγοντες που ο ένας μεταβάλλεται ...
Δείτε και "κατεβάστε":

Σάββατο 1 Οκτωβρίου 2011

ΠΕΡΙΠΤΩΣΗ: ΒΟΛΗ ΠΡΟΣ ΤΑ ΠΑΝΩ – ΠΛΑΣΤΙΚΗ ΚΡΟΥΣΗ – Α.Α.Τ.

   ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΣΧΕΣΗΣ  x-t. ΑΛΛΗ ΜΙΑ ΣΧΕΣΗ “ΕΡΓΑΛΕΙΟ”


(Για λόγους απλότητας, προκειμένου να καταδειχτούν τα πολλά κοινά σημεία που έχει η περίπτωση αυτή με την περίπτωση της προηγούμενης ανάρτησης, θα προσεγγίσουμε και αυτό το θέμα  με τον ίδιο τρόπο ανάλυσης).

Και σε αυτήν την περίπτωση, επειδή το βάρος του συσσωματώματος είναι μεγαλύτερο από αυτό του ενός σώματος, η θέση ισορροπίας ( Ι΄)  της ταλάντωσης του συσσωματώματος  είναι χαμηλότερα από τη θέση ισορροπίας (Ι) του σώματος που αρχικά ισορροπεί μόνο του στο ελατήριο. Επίσης κι εδώ, η απόσταση ΙΊ αντιστοιχεί στην αρχική απομάκρυνση της ταλάντωσης.
Και εδώ, αν θεωρήσουμε πάλι την προς τα πάνω φορά θετική, η ταλάντωση αρχίζει από μια θέση ,τη Ι, με θετική απομάκρυνση (ίση με ΙΊ). Όμως τώρα η αρχική ταχύτητα είναι θετική (προς τα πάνω)  κι όχι αρνητική όπως πριν. Αυτό σημαίνει ότι, η αρχική φάση της ταλάντωσης θα περιορίζεται ανάμεσα στις τιμές 0 και π/2.
Αν βάλλουμε πάλι έναν από τους παρακάτω περιορισμούς:

Τρίτη 27 Σεπτεμβρίου 2011

ΕΛΕΥΘΕΡΗ  ΠΤΩΣΗ – ΠΛΑΣΤΙΚΗ ΚΡΟΥΣΗ – Α.Α.Τ., ΜΙΑ ΣΧΕΣΗ “ΕΡΓΑΛΕΙΟ” ΓΙΑ ΤΗ ΣΥΝΑΡΤΗΣΗ  xt. (6ο θεωρητικό σημείωμα)

ΜΕΡΟΣ 1ο
Σε αυτές τις περιπτώσεις, ως γνωστόν, η θέση ισορροπίας ( Ι΄)  της ταλάντωσης του συσσωματώματος  είναι χαμηλότερα από τη θέση ισορροπίας (Ι) του σώματος που αρχικά ισορροπεί μόνο του στο ελατήριο. Επιπλέον, η απόσταση ΙΊ αντιστοιχεί στην αρχική απομάκρυνση xαρχ της ταλάντωσης.
Έτσι, αν θεωρήσουμε την προς τα πάνω φορά θετική, στη θέση Ι, από την οποία αρχίζει την ταλάντωσή του το συσσωμάτωμα, αντιστοιχεί θετική απομάκρυνση xαρχ (ίση με ΙΊ) κι αρνητική ταχύτητα (προς τα κάτω). Αυτό σημαίνει ότι, η αρχική φάση της ταλάντωσης θα περιορίζεται ανάμεσα στις τιμές π/2 και π.
Συνέχεια ...





                                                                                    
                                                          ΜΕΡΟΣ 2ο

Τι θα λέγατε τώρα αν σας καλούσαν να αντιμετωπίσετε αντίστροφα μια τέτοια περίπτωση, ελεύθερης πτώσης- πλαστικής κρούσης - α.α.τ. με φ0 = 5π/6;
 Να σας έδιναν δηλαδή:
α) Την εξίσωση ταλάντωσης του συσσωματώματος και μόνο τη μια μάζα και να  σας ζητούσαν τα υπόλοιπα τρία μεγέθη, δηλαδή την άλλη μάζα, τη σταθερά k και το ύψος h,  ή
β) Την εξίσωση ταλάντωσης του συσσωματώματος και μόνο τη σταθερά k και να  σας ζητούσαν τα υπόλοιπα τρία μεγέθη: m, M και h.
(Στα δεδομένα, φυσικά, πρέπει να  ενταχθεί και τη σταθερά g).

Παρασκευή 2 Σεπτεμβρίου 2011

Α.Α.Τ.: ΜΙΑ ΙΣΤΟΡΙΑ, Ο ΚΥΚΛΟΣ ΑΝΑΦΟΡΑΣ ΚΑΙ ΤΟ ΣΤΡΕΦΟΜΕΝΟ ΔΙΑΝΥΣΜΑ (5o ΘΕΩΡΗΤΙΚΟ ΣΗΜΕΙΩΜΑ)  - 

ΜΕΡΟΣ 1ο
(Η ΙΣΤΟΡΙΑ)
Ιστορική αναφορά για το ποιος πρώτος συσχέτισε την κυκλική κίνηση με την ταλάντωση δεν έχουμε. Σίγουρα θα έγιναν πολλές τέτοιες μεμονωμένες αντιστοιχήσεις κυκλικής κίνησης – ταλάντωσης, χωρίς όμως να καταγραφούν, αφού στο πολύ παρελθόν το “πάντρεμα” αυτών των δύο κινήσεων δεν παρουσίαζε κανένα πρακτικό ενδιαφέρον.
Θα μπορούσε, επομένως, η παρακάτω φανταστική ιστοριούλα, φτιαγμένη για να δοθεί έμφαση σε ότι θα ακολουθήσει, να είναι και αληθινή.



ΜΕΡΟΣ 2ο

ΧΡΗΣΙΜΟΤΗΤΑ ΤΟΥ ΚΥΚΛΟΥ ΑΝΑΦΟΡΑΣ ΚΑΙ ΤΟΥ ΣΤΡΕΦΟΜΕΝΟΥ ΔΙΑΝΥΣΜΑΤΟΣ
1.Υπολογισμός της αρχικής φάσης με τη βοήθεια του στρεφόμενου διανύσματος
Φανταστείτε τον κύκλο αναφοράς να ταυτίζεται με τον γνωστό σας τριγωνομετρικό κύκλο και θεωρείστε ότι στην περιφέρειά του κινείται με σταθερή γωνιακή ταχύτητα, αριστερόστροφα, ένα υλικό σημείο. Τότε η προβολή αυτής της κίνησης στην κατακόρυφη διάμετρο του κύκλου, ισοδυναμεί, όπως προαναφέραμε, με μια α.α.τ. Θεωρείστε, επίσης, την προς τα πάνω κατεύθυνση θετική. Τότε, η αρχική φάση φο αυτής της ταλάντωσης αντιστοιχεί στη γωνία (με αριστερόστροφη κατεύθυνση) μεταξύ του διανύσματος θέσης και του οριζόντιου θετικού ημιάξονα τη χρονική στιγμή t = 0.

ΜΕΡΟΣ 3ο
2. Υπολογισμός χρονικών διαστημάτων στην α.α.τ.
Ο υπολογισμός αυτός, με τη χρήση των εξισώσεων κίνησης, είναι πολλές φορές αρκετά δύσκολος. Η χρήση του κύκλου αναφοράς καθιστά πολύ εύκολο το σχετικό υπολογισμό.
1ο Παράδειγμα . Να υπολογίσετε το χρονικό διάστημα, στη διάρκεια μιας περιόδου, κατά το οποίο η δυναμική ενέργεια ταλάντωσης είναι μεγαλύτερη ή ίση της κινητικής.
Εύκολα προκύπτει* ότι η σχέση αυτή ανάμεσα στις ενέργειες της ταλάντωσης ισχύει όταν …

Κυριακή 31 Ιουλίου 2011

ΔΥΝΑΜΙΚΗ ΕΝΕΡΓΕΙΑ ΤΑΛΑΝΤΩΣΗΣ =  ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ (4o ΘΕΩΡΗΤΙΚΟ ΣΗΜΕΙΩΜΑ)

Ένα σώμα εκτελεί αατ πλάτους Α και γωνιακής συχνότητας ω. 
Α.  Σε ποιες θέσεις ισχύει:
Δυναμική ενέργεια ταλάντωσης =  Κινητική  ενέργεια;
Β.  Ποιες είναι οι τιμές της ταχύτητας, της επιτάχυνσης και της δύναμης επαναφοράς στις θέσεις αυτές;

Δευτέρα 29 Νοεμβρίου 2010

3o θεωρητικό σημείωμα.

Κατά το βέλτιστο δυνατό τρόπο …

  Ένα θεωρητικό κείμενο και μια εφαρμογή, με αφορμή τη δυσκολονόητη φράση (σελ. 23) του σχολικού βιβλίου:
  “ Κατά το συντονισμό η ενέργεια μεταφέρεται στο σύστημα κατά το βέλτιστο δυνατό τρόπο, γι αυτό το πλάτος της ταλάντωσης γίνεται μέγιστο”

 
Σας δίνεται η παρακάτω πληροφορία:
 «Ο συντονισμός, (με την έννοια ότι είναι μια κατάσταση μεγιστοποίησης του ρυθμού μεταφοράς ενέργειας από το διεγέρτη στο ταλαντούμενο σώμα, που συμβαίνει όταν ωδ = ωο), γίνεται καλύτερα κατανοητός αν σκεφτούμε πως, στην κατάσταση αυτή, η δύναμη του διεγέρτη πρέπει να είναι σε φάση με την ταχύτητα του σώματος που ταλαντώνεται. Δηλαδή, η Fδιεγ και η υ πρέπει να έχουν το ίδιο φο και το ίδιο ω, το ωο.
   Έτσι, ο διεγέρτης ασκεί την απαραίτητη δύναμη στη μάζα ακριβώς την κατάλληλη στιγμή και στην κατάλληλη θέση, με αποτέλεσμα η ενέργεια να μεταφέρεται στη μάζα με το βέλτιστο δυνατό τρόπο …. 
  Για παράδειγμα: είναι γνωστό ότι όταν x = 0 και η μάζα κινείται προς τη θετική κατεύθυνση, τότε υ = max.  Πρέπει, για να’ χουμε συντονισμό, αυτή τη χρονική στιγμή, η δύναμη του διεγέρτη να πάρει κι αυτή τη μέγιστη θετική τιμή της, ώστε να εξουδετερώσει τη δύναμη απόσβεσης, η οποία την ίδια στιγμή έχει μέγιστο μέτρο αλλά αρνητική αλγεβρική τιμή. Στις ακραίες θέσεις, όπου η ταχύτητα μηδενίζεται κι αλλάζει κατεύθυνση, πρέπει και η δύναμη του διεγέρτη να μηδενίζεται και να αλλάζει ταυτόχρονα και κατά τον ίδιο τρόπο κατεύθυνση».

  Έστω, λοιπόν, μια εξαναγκασμένη, με απόσβεση, μηχανική ταλάντωση, στην οποία η δύναμη του διεγέρτη παρέχεται από τη σχέση: F = Fo ημ(40πt)    (S.I) .
  α)  Πόση πρέπει να είναι η ιδιοσυχνότητα του ταλαντούμενου συστήματος ώστε η ενέργεια να μεταφέρεται από το διεγέρτη στο σύστημα με το βέλτιστο δυνατό τρόπο;
  β)  Δίνεται ότι, με τη δράση της παραπάνω διεγείρουσας δύναμης, το πλάτος της ταλάντωσης γίνεται 10 cm.  Να γράψετε τις εξισώσεις της ταχύτητας και της απομάκρυνσης με το χρόνο στην κατάσταση που περιγράφεται στο προηγούμενο ερώτημα.
   
    Aπ.  α) 20 Ηz,    β) πρέπει να θυμηθείτε ότι η φάση της ταχύτητας είναι μεγαλύτερη από τη φάση της απομάκρυνσης κατά  π/2,  οπότε:  υ = Αωημ40πtx =0,1ημ(40πt – π/2),   (S.I)

Τετάρτη 3 Νοεμβρίου 2010

2ο θεωρητικό σημείωμα

Τι κάνουμε όταν χρειαζόμαστε τη δύναμη επαφής; 

Αυτά για την απώλεια επαφής. Πώς θα υπολογίσουμε όμως τη δύναμη επαφής σε μια συγκεκριμένη θέση;  
Επειδή η δύναμη επαφής είναι εσωτερική δύναμη ανάμεσα στα δύο σώματα δεν μπορούμε να την υπολογίσουμε από σχέσεις που αναφέρονται στην α.α.τ του συστήματος των σωμάτων, γιατί απλούστατα δεν υπάρχει σ’ αυτές. Γι αυτό πρέπει να ασχοληθούμε ξεχωριστά με τις α.α.τ κάθε σώματος και συγκεκριμένα με τη συνισταμένη δύναμη, που καθένα απ’ αυτά δέχεται και την εξάρτησή της με την απομάκρυνση x από τη θέση ισορροπίας.