Η φύση αγαπά την αλήθεια, και η αλήθεια της φύσης διεκδικεί το δικαίωμα να εκτίθεται μόνο σε όσους την ποθούν. Φ. Ντοστογιέφσκι

Εμφάνιση αναρτήσεων με ετικέτα 1.1.γ Ασκήσεις. Εμφάνιση όλων των αναρτήσεων
Εμφάνιση αναρτήσεων με ετικέτα 1.1.γ Ασκήσεις. Εμφάνιση όλων των αναρτήσεων

Δευτέρα 12 Νοεμβρίου 2012

Κι άλλες συναρτήσεις και διαγράμματα Fελt σε απλό αρμονικό ταλαντωτή με κατακόρυφο ελατήριο

Να γίνει σε κάθε περίπτωση, με ελεύθερη εκτίμηση, το διάγραμμα Fελt.
Θεωρείστε φ0 = 0 και την προς τα πάνω κατεύθυνση θετική.
 
 περίπτωση.

Δίνονται:
k = 125 N/m,  A = 0,4 m,  m = 5 kgr,  g = 10 m/s2

ΕΛΕΥΘΕΡΗ  ΠΤΩΣΗ – ΠΛΑΣΤΙΚΗ ΚΡΟΥΣΗ – Α.Α.Τ. ΚΑΙ Η ΣΥΝΑΡΤΗΣΗ Fελ t



Δίνονται: k = 160 N/mM = 9 kgrm = 1 kgrh = 15/16 m και g = 10 m/s2
Α. Με αρχή χρόνων τη στιγμή της δημιουργίας του συσσωματώματος να εξάγετε τη σχέση απομάκρυνσης - χρόνου της α.α.τ. που θα εκτελέσει το συσσωμάτωμα.
Β. Να εξάγετε τις σχέσεις Fελ – απομάκρυνσης και Fελ – χρόνου και να τις παραστήσετε γραφικά σε κατάλληλα αριθμημένο σύστημα αξόνων.
Γ. Πόση είναι η δυναμική ενέργεια του ελατηρίου τη στιγμή που η δυναμική ενέργεια της ταλάντωσης είναι μηδέν;

ΕΛΕΥΘΕΡΗ  ΠΤΩΣΗ – ΠΛΑΣΤΙΚΗ ΚΡΟΥΣΗ – Α.Α.Τ., ΕΞΙΣΩΣΗ xtΕΝΑ ΠΗΛΙΚΟ ΚΙ ΕΝΑΣ ΡΥΘΜΟΣ


 Το σώμα Σ2 αφήνεται από ύψος h και συγκρούεται κεντρικά και πλαστικά με το σώμα Σ1, που ηρεμεί στερεωμένο στο πάνω άκρο κατακόρυφου ελατηρίου.


Δίνονται: k = 100 N/mM = 3 kgrm = 1 kgrh = 0,6 m και g = 10 m/s2.

Α. Να δείξετε ότι το συσσωμάτωμα θα κάνει α.α.τ. και με αρχή χρόνων τη στιγμή της δημιουργίας του να εξάγετε τη σχέση απομάκρυνσης - χρόνου της α.α.τ. που θα εκτελέσει.
Β. Να προσδιορίσετε την τιμή του πηλίκου: 
Γ. Σε ποια θέση και σε πόσο χρόνο από τη στιγμή της κρούσης το συσσωμάτωμα θα σταματήσει (στιγμιαία) για πρώτη φορά;
Δ. Πόσος είναι ο ρυθμός μεταβολής της ορμής του σώματος στην παραπάνω θέση;

Για την ταλάντωση του συσσωματώματος να θεωρήσετε θετική φορά την προς τα πάνω και στο πηλίκο να θέσετε τις αλγεβρικές τιμές των δυνάμεων.





Παρασκευή 2 Νοεμβρίου 2012

Η ΤΑΣΗ ΝΗΜΑΤΟΣ ΚΑΙ ΤΟ ΦΥΣΙΚΟ ΜΗΚΟΣ ΕΛΑΤΗΡΙΟΥ  -2ο


2.  ΣΩΜΑ ΔΕΜΕΝΟ ΜΕ ΣΧΟΙΝΙ ΣΕ ΣΥΣΤΗΜΑ ΚΑΤΑΚΟΡΥΦΟ ΕΛΑΤΗΡΙΟ – ΣΩΜΑ

Εδώ, στο κάτω άκρο του ελατηρίου έχουμε προσαρμόσει ένα σώμα μάζας Μ από το οποίο κρέμεται με σχοινί ένα άλλο σώμα μάζας m. Το σύστημα αρχικά ηρεμεί με το ελατήριο παραμορφωμένο κατά Δℓ.

Απομακρύνουμε το σύστημα των σωμάτων κατά d προς τα κάτω και το αφήνουμε ελεύθερο. Πόση είναι η μέγιστη δυνατή τιμή του d για την οποία το σχοινί διατηρείται διαρκώς τεντωμένο; 

Θεωρείστε το σχοινί αβαρές και μη εκτατό.

Η λύση εδώ.

Η ΤΑΣΗ ΝΗΜΑΤΟΣ ΚΑΙ ΤΟ ΦΥΣΙΚΟ ΜΗΚΟΣ ΕΛΑΤΗΡΙΟΥ -1ο


1.  ΣΩΜΑ ΔΕΜΕΝΟ ΜΕ ΣΧΟΙΝΙ ΣΤΟ ΑΚΡΟ ΚΑΤΑΚΟΡΥΦΟΥ ΕΛΑΤΗΡΙΟΥ

Στο σχήμα φαίνεται ένα κατακόρυφο αβαρές ελατήριο στερεωμένο με το ένα άκρο του σε μια οροφή. Αρχικά το ελατήριο έχει το φυσικό του μήκος, όταν όμως με τη βοήθεια ενός σχοινιού κρεμάσουμε στο κάτω άκρο του ένα σώμα μάζας m και το αφήνουμε σιγά - σιγά να ισορροπήσει στη θέση Θ.Ι του σχήματος, το μήκος του θα αυξηθεί κατά Δℓ.
Απομακρύνουμε το σώμα κατά d προς τα κάτω και το αφήνουμε ελεύθερο. Πόση είναι η μέγιστη δυνατή τιμή του d για την οποία το σχοινί διατηρείται διαρκώς τεντωμένο; Θεωρείστε το σχοινί αβαρές και μη εκτατό.

Σκεφτείτε, προσπαθήστε κι ύστερα …

Σάββατο 20 Οκτωβρίου 2012

Ευθύγραμμη ομαλά μεταβαλλόμενη κίνηση αντιμέτωπη με αρμονικά μεταβαλλόμενη κίνηση



Στο χώρο, όπου βρίσκονται τα σώματα του σχήματος, υπάρχει ομογενές ηλεκτρικό πεδίο έντασης Ε. Το σφαιρίδιο Σ2 είναι ηλεκτρικά φορτισμένο με φορτίο q και αρχικά το συγκρατούμε ακίνητο σε απόσταση ℓ από το αφόρτιστο σώμα Σ1 που ισορροπεί στερεωμένο στο αριστερό άκρο ενός οριζόντιου ελατηρίου όπως στο σχήμα. Το οριζόντιο δάπεδο είναι λείο.
Μετακινούμε το Σ1 προς τα δεξιά κατά x1 = 0,2 m και το αφήνουμε ελεύθερο. Την ίδια στιγμή αφήνουμε ελεύθερο και το Σ2.

Α. Να υπολογίσετε την απόσταση ℓ ώστε η συνάντηση των σωμάτων να γίνει στη θέση ισορροπίας του Σ1.

Β. Αν δίνεται ότι μετά την κρούση τα δύο σώματα ξαναγυρίζουν στις αρχικές τους θέσεις με μηδενικές ταχύτητες, να υπολογίσετε την m2.

Γ. Να εξηγήσετε ότι η κρούση των σωμάτων είναι  ελαστική και να δείξετε ότι θα φτάσουν στις αρχικές τους θέσεις ταυτόχρονα.

Δ. Αν σε ένα ιδανικό κύκλωμα LC ...

Δείτε:

Σάββατο 13 Οκτωβρίου 2012

 ΔΙΕΓΕΡΣΗ ΣΕ Α.Α.Τ. ΣΥΣΤΗΜΑΤΟΣ ΕΛΑΤΗΡΙΟ – ΣΩΜΑ ΑΠΟ ΜΕΤΑΒΛΗΤΗ ΕΞΩΤΕΡΙΚΗ ΔΥΝΑΜΗ


Ειδική περίπτωση

  Το σώμα Σ ισορροπεί αρχικά στη θέση I κρεμασμένο από ένα κατακόρυφο ελατήριο, όπως φαίνεται στο σχήμα. Κάποια στιγμή εφαρμόζουμε πάνω του μια κατακόρυφη με φορά προς τα κάτω δύναμη F, που το μέτρο της μεταβάλλεται σύμφωνα με τη σχέση:  F = (40/3)y +10 (το F σε N και το y σε m), όπου y η απόσταση του σώματος από τη θέση ισορροπίας. Έπειτα από 1sec καταργούμε την F.
Α. Δείξτε ότι, στη διάρκεια που στο σώμα ενεργεί η δύναμη F, εκτελεί ευθύγραμμη ομαλά επιταχυνόμενη κίνηση. ενώ μετά την κατάργησή της θα κάνει α.α.τ.
Β. Προσδιορίστε τα μεγέθη της ταλάντωσης: ω, Αφο.
(Για τα διανυσματικά μεγέθη της α.α.τ. θεωρείστε θετική την προς τα κάτω φορά. Ως αρχή μέτρησης χρόνου θεωρείστε τη στιγμή που το σύστημα ξεκινά να ταλαντώνεται).
Δίνονται: m = 10 kgrg = 10 m/s2k = 40/3 N/m

Δείτε:

Σάββατο 29 Σεπτεμβρίου 2012

ΕΠΙΔΡΑΣΗ ΜΙΑΣ ΠΡΟΣΘΕΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΔΥΝΑΜΗΣ ΣΕ ΜΙΑ Α.Α.Τ.


·      Πώς μια πρόσθετη μεταβλητή δύναμη επηρεάζει την α.α.τ. συστήματος “κατακόρυφο ελατήριο – μάζα”
Το κάτω άκρο ενός κατακόρυφου ελατηρίου σταθεράς k1 είναι ακλόνητα στερεωμένο στο δάπεδο ενώ στο πάνω άκρο έχουμε δέσει ένα σώμα μπάζας m = 1 kgr το οποίο εκτελεί α.α.τ. με πλάτος Α = 0,1 m και με συχνότητα   =  5/π  Hz. Κάποια στιγμή, συγκεκριμένα όταν το σώμα διέρχεται από το ανώτερο σημείο της τροχιάς του (αλλιώς, πάνω ακραία θέση ή Π.Α) αρχίζει να ενεργεί πάνω του, με φορά προς τα πάνω μια επιπλέον κατακόρυφη μεταβλητή δύναμη μέτρου F2 = 300y, όπου y η απόσταση του σώματος από το σημείο αυτό.
Α. Να  δείξετε ότι το σώμα θα εξακολουθήσει να κάνει α.α.τ. και να προσδιορίσετε το νέο πλάτος και τη νέα της συχνότητα.
Β. Πόση είναι η μέγιστη κινητική ενέργεια Κ΄μεγ της νέας ταλάντωσης;
Γ. Με αρχή μέτρησης του χρόνου (t = 0) τη στιγμή που αρχίζει να δρα πάνω στο σώμα η δύναμη F2 να εξάγετε τη σχέση που συνδέει την F2 με το χρόνο.
Δίνεται g = 10 m/s2.

Περισσότερα:

 Εφαρμόστε τα προηγούμενα στις δύο παρακάτω παραλλαγές:





1η. Πώς θα λύνατε την παραπάνω άσκηση αν η δύναμη F2 είχε φορά προς τα κάτω κι άρχιζε να ενεργεί πάνω στο σώμα τη στιγμή που διέρχεται από την κάτω ακραία θέση (Κ.Α) της αρχικής του ταλάντωσης; (Θεωρείστε το y ως την απόσταση από την Κ.Α).












2η. Πώς θα λύνατε την παραπάνω άσκηση αν η δύναμη F2 είχε φορά προς τα κάτω κι άρχιζε να εφαρμόζεται πάνω στο σώμα τη στιγμή που διέρχεται από την θέση ισορροπίας (Θ.Ι) ανεβαίνοντας; (Θεωρείστε το y ως την απόσταση από την Θ.Ι).









Δευτέρα 24 Σεπτεμβρίου 2012


ΔΥΝΑΜΕΙΣ ΠΟΥ ΦΕΡΝΟΥΝ ΤΑ ΠΑΝΩ  … ΚΑΤΩ  ΚΑΙ  ΤΑ ΚΑΤΩ … ΠΑΝΩ ΣΤΙΣ Α.Α.Τ.


Πως μια δύναμη μπορεί να φέρει τα πάνω … κάτω σε μια α.α.τ.

Το σώμα Σ αρχικά εκτελεί α.α.τ. με γνωστά τα παρακάτω μεγέθη:
Μάζα m = 1 kgr, σταθερά ελατηρίου k = 100 N/m, πλάτος A = 4 cm και  g = 10 m/s2 .
Έστω Π1 η πάνω ακραία θέση και Κ1 η κάτω ακραία θέση της ταλάντωσης. Κάποια στιγμή, όταν το σώμα διέρχεται από την πάνω ακραία θέση Π1, εφαρμόζουμε πάνω του μια κατακόρυφη σταθερή δύναμη F.
Α. Να προσδιορίσετε αυτή τη δύναμη (μέτρο- φορά) ώστε το σώμα να παραμείνει ακίνητο.
Β. Δείξτε ότι αν στην ίδια θέση, αντί της F, εφαρμόσουμε στο σώμα μια δύναμη F΄ μεγαλύτερη από την F και με φορά προς τα πάνω, τότε το σώμα θα εκτελέσει μια νέα α.α.τ. στην οποία η θέση Π1 θα είναι κάτω ακραία θέση.
Γ. Πόσο πρέπει να είναι το μέτρο της F΄ ώστε η νέα ταλάντωση να έχει πλάτος ίδιο με της παλιάς;

 Περισσότερα:

 Δείτε και τις εξής παραλλαγές των παραπάνω ασκήσεων:  
            


Παρασκευή 9 Σεπτεμβρίου 2011

ΤΡΕΙΣ ΤΑΥΤΟΤΗΤΕΣ της ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ

Η σχέση:
  ημΑ+ ημΒ = 2συν(Α/2+Β/2)ημ(Α/2-Β/2)
δε χρειάζεται μόνο στο διακρότημα!
Να ένα παράδειγμα:
Στο τέλος τριών διαδοχικών δευτερολέπτων οι απομακρύνσεις ενός υλικού σημείου, που εκτελεί α.α.τ., από τη θέση ισορροπίας του είναι +10 cm, -10 cm, +10 cm. Υπολογίστε την περίοδο της α.α.τ. (Θεωρείστε ότι στην αρχή μέτρησης των χρόνων το κινητό βρίσκεται στη θέση ισορροπίας του και κατευθύνεται προς τη θετική κατεύθυνση).

Παρασκευή 2 Σεπτεμβρίου 2011

Α.Α.Τ.: ΜΙΑ ΙΣΤΟΡΙΑ, Ο ΚΥΚΛΟΣ ΑΝΑΦΟΡΑΣ ΚΑΙ ΤΟ ΣΤΡΕΦΟΜΕΝΟ ΔΙΑΝΥΣΜΑ (5o ΘΕΩΡΗΤΙΚΟ ΣΗΜΕΙΩΜΑ)  - 

ΜΕΡΟΣ 1ο
(Η ΙΣΤΟΡΙΑ)
Ιστορική αναφορά για το ποιος πρώτος συσχέτισε την κυκλική κίνηση με την ταλάντωση δεν έχουμε. Σίγουρα θα έγιναν πολλές τέτοιες μεμονωμένες αντιστοιχήσεις κυκλικής κίνησης – ταλάντωσης, χωρίς όμως να καταγραφούν, αφού στο πολύ παρελθόν το “πάντρεμα” αυτών των δύο κινήσεων δεν παρουσίαζε κανένα πρακτικό ενδιαφέρον.
Θα μπορούσε, επομένως, η παρακάτω φανταστική ιστοριούλα, φτιαγμένη για να δοθεί έμφαση σε ότι θα ακολουθήσει, να είναι και αληθινή.



ΜΕΡΟΣ 2ο

ΧΡΗΣΙΜΟΤΗΤΑ ΤΟΥ ΚΥΚΛΟΥ ΑΝΑΦΟΡΑΣ ΚΑΙ ΤΟΥ ΣΤΡΕΦΟΜΕΝΟΥ ΔΙΑΝΥΣΜΑΤΟΣ
1.Υπολογισμός της αρχικής φάσης με τη βοήθεια του στρεφόμενου διανύσματος
Φανταστείτε τον κύκλο αναφοράς να ταυτίζεται με τον γνωστό σας τριγωνομετρικό κύκλο και θεωρείστε ότι στην περιφέρειά του κινείται με σταθερή γωνιακή ταχύτητα, αριστερόστροφα, ένα υλικό σημείο. Τότε η προβολή αυτής της κίνησης στην κατακόρυφη διάμετρο του κύκλου, ισοδυναμεί, όπως προαναφέραμε, με μια α.α.τ. Θεωρείστε, επίσης, την προς τα πάνω κατεύθυνση θετική. Τότε, η αρχική φάση φο αυτής της ταλάντωσης αντιστοιχεί στη γωνία (με αριστερόστροφη κατεύθυνση) μεταξύ του διανύσματος θέσης και του οριζόντιου θετικού ημιάξονα τη χρονική στιγμή t = 0.

ΜΕΡΟΣ 3ο
2. Υπολογισμός χρονικών διαστημάτων στην α.α.τ.
Ο υπολογισμός αυτός, με τη χρήση των εξισώσεων κίνησης, είναι πολλές φορές αρκετά δύσκολος. Η χρήση του κύκλου αναφοράς καθιστά πολύ εύκολο το σχετικό υπολογισμό.
1ο Παράδειγμα . Να υπολογίσετε το χρονικό διάστημα, στη διάρκεια μιας περιόδου, κατά το οποίο η δυναμική ενέργεια ταλάντωσης είναι μεγαλύτερη ή ίση της κινητικής.
Εύκολα προκύπτει* ότι η σχέση αυτή ανάμεσα στις ενέργειες της ταλάντωσης ισχύει όταν …

Κυριακή 31 Ιουλίου 2011

ΔΥΝΑΜΙΚΗ ΕΝΕΡΓΕΙΑ ΤΑΛΑΝΤΩΣΗΣ =  ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ (4o ΘΕΩΡΗΤΙΚΟ ΣΗΜΕΙΩΜΑ)

Ένα σώμα εκτελεί αατ πλάτους Α και γωνιακής συχνότητας ω. 
Α.  Σε ποιες θέσεις ισχύει:
Δυναμική ενέργεια ταλάντωσης =  Κινητική  ενέργεια;
Β.  Ποιες είναι οι τιμές της ταχύτητας, της επιτάχυνσης και της δύναμης επαναφοράς στις θέσεις αυτές;

Δευτέρα 27 Σεπτεμβρίου 2010

Αρχική θέση º Ακραία θέση (σε κατακόρυφη διεύθυνση).

Αρχική θέση = ακραία θέση (3ο μέρος) 

 Στις τέσσερις περιπτώσεις, που φαίνονται στα παρακάτω σχήματα, οι τιμές των μεγεθών έχουν επιλεγεί έτσι ώστε να μπορείτε να ακολουθήσετε με ευκολία τα βήματα που αναφέρονται στην απάντηση της προηγούμενης ανάρτησης. Σε κάθε περίπτωση αναφέρεται και η τελική απάντηση για να ελέγξετε την εργασία σας.


Εκφώνηση (κοινή για όλες τις περιπτώσεις).

   To σώμα, σε κάθε σχήμα, είναι προσδεμένο στο ένα άκρο ενός κατακόρυφου ελατηρίου. Αρχικά, με τη βοήθεια ενός σχοινιού ισορροπεί στη θέση Α. Τριβές δεν  υπάρχουν.
α) Κάποια στιγμή κόβουμε το σχοινί. Nα δείξετε ότι το σώμα θα κάνει α.α.τ και ότι θα περνά περιοδικά από τη θέση Φ όπου το ελατήριο έχει το φυσικό του μήκος.
β) Βρείτε τον ελάχιστο χρόνο μεταξύ δύο διαδοχικών διελεύσεων του σώματος από τη θέση Φ.











Κυριακή 26 Σεπτεμβρίου 2010

Αρχική θέση º Ακραία θέση (σε πλάγιο επίπεδο.

Αρχική θέση = ακραία θέση (2ο μέρος)
          To σώμα του σχήματος είναι προσδεμένο στο πάνω άκρο του ελατηρίου. Αρχικά, με τη βοήθεια ενός σχοινιού ισορροπεί στη θέση Α. Τριβές δεν  υπάρχουν.
α) Κάποια στιγμή κόβουμε το σχοινί. Nα δείξετε ότι το σώμα θα κάνει α.α.τ και ότι θα περνά περιοδικά από τη θέση Φ όπου το ελατήριο έχει το φυσικό του μήκος.
β) Βρείτε τον ελάχιστο χρόνο μεταξύ δύο διαδοχικών διελεύσεων του σώματος από τη θέση Φ.
Δίνονται:   m = 1 Kgr,  g = 10 m/sec2,  φ = 30o,  

 τάση σχοινιού:  Τ = 10 Nt,  και  k = 100N/m.



Δοκι        Δοκιμάστε να λύσετε την άσκηση με το ένα άκρο του ελατηρίου δεμένο στην κορυφή (κι όχι στη βάση) του πλάγιου επιπέδου με ίδιες, όπως πριν, τις τιμές των μεγεθών m ,k, T, g και φ.  Θα εκπλαγείτε αν διαπιστώσετε ότι ελάχιστα πράγματα αλλάζουν ως προς τη μέθοδο λύσης, αλλά και ως προς τα αποτελέσματα!



Απάντηση: