Η φύση αγαπά την αλήθεια, και η αλήθεια της φύσης διεκδικεί το δικαίωμα να εκτίθεται μόνο σε όσους την ποθούν. Φ. Ντοστογιέφσκι

Παρασκευή 25 Ιανουαρίου 2013

ΠΡΟΣΕΔΑΦΙΣΗ ΑΕΡΟΠΛΑΝΟΥ ΜΕ ΧΑΜΗΛΗ ΟΡΑΤΟΤΗΤΑ


Η συμβολή των ηλεκτρομαγνητικών κυμάτων, που εκπέμπονται από σύγχρονες πηγές, βρίσκει εφαρμογή στην καθοδήγηση των αεροσκαφών για ασφαλείς προσγειώσεις με χαμηλή ορατότητα. Μπορεί στην πράξη η χρησιμοποιούμενη τεχνική να είναι πιο περίπλοκη από αυτήν που περιγράφεται στην παρακάτω εφαρμογή, βασίζεται όμως στις γνωστές αρχές της συμβολής.
Σε καιρό καταιγίδας, με χαμηλή ορατότητα, ένα αεροπλάνο ετοιμάζεται να προσγειωθεί. Οι ηλεκτρονικές συσκευές του εντοπίζουν ένα ισχυρό σήμα που   προέρχεται από τη συμβολή δύο ηλεκτρομαγνητικών κυμάτων με ίδια συχνότητα f = 20 MHz  και ίδια φάση, τα οποία εκπέμπονται από δύο κεραίες Π1 και Π2 που βρίσκονται εκατέρωθεν του διαδρόμου προσγείωσης και σε απόσταση Π1Π2 = 40 m μεταξύ τους. 
Ο πιλότος “κλειδώνει” την πορεία του αεροπλάνου πάνω σ’ αυτό το ισχυρό σήμα.
Α. Βρείτε το μήκος κύματος των ραδιοκυμάτων. (Δίνεται c = 3.108m/s)
Β. Κάποια στιγμή ο πιλότος πληροφορείται από τον πύργο ελέγχου ότι:   

  • Βρίσκεται και κινείται στην πρώτη υπερβολή ενισχυτικής συμβολής μετά τη μεσοκάθετο στο Π1Π2, που είναι η κεντρική γραμμή του διαδρόμου προσγείωσης.
  •  Η πορεία του, εκείνη τη στιγμή, σχηματίζει γωνία 300 με τη μεσοκάθετο στο Π1Π2, και ότι, 
  • εκείνη τη στιγμή, η απόστασή του από το κεντρικό σημείο M του Π1Π2 είναι AM=2 km.
Β1. Σε πόση απόσταση d από την κεντρική γραμμή του διαδρόμου προσγείωσης βρίσκεται το αεροπλάνο τη στιγμή της επικοινωνίας του με τον πύργο ελέγχου;
Β2. Σε πόση απόσταση από το κεντρικό σημείο του Π1Π2 θα διέλθει κατά την προσεδάφισή του το αεροπλάνο, αν συνεχίσει να κινείται στην πρώτη υπερβολή ενισχυτικής συμβολής;
Β3. Πόσες μοίρες πρέπει ο πιλότος να προλάβει να στρίψει το ρύγχος του αεροπλάνου, ώστε μετά την προσεδάφισή του να κινηθεί παράλληλα προς την κεντρική γραμμή του διαδρόμου προσγείωσης;
Γ. Η ιδανικότερη περίπτωση είναι  …

Σάββατο 12 Ιανουαρίου 2013


ΔΙΑΘΛΑΣΗ ΔΕΣΜΗΣ LASER ΣΕ ΓΥΑΛΙ ΣΧΗΜΑΤΟΣ L


Μια φωτεινή δέσμη Laser προσπίπτει υπό γωνία 450 στη μια πλευρά ενός γυάλινου κομματιού σχήματος L, όπως φαίνεται στο σχήμα. Κάθε σκέλος της γυάλινης γωνίας έχει το ίδιο πάχος d. Αν δεν συνέβαινε διάθλαση της δέσμης,  θα κινούνταν στο εσωτερικό της γυάλινης γωνίας ακριβώς όπως η διακεκομμένη γραμμή του σχήματος. Αλλά υπάρχει διάθλαση, κι έτσι η δέσμη Laser εξέρχεται από το γυαλί
α.  δεξιά από τη διακεκομμένη γραμμή.
β.  ακριβώς στην προέκταση της διακεκομμένης γραμμής.
γ.  αριστερά από τη διακεκομμένη.
Επιλέξτε, με αιτιολόγηση, το σωστό.


Τρίτη 25 Δεκεμβρίου 2012

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΚΑΙ ΤΡIΒΗ

Όταν το σύστημα που φαίνεται στο σχήμα βρίσκεται σε ισορροπία, το δεξί ελατήριο  είναι τεντωμένο κατά x1. Ο συντελεστής μέγιστης στατικής τριβής μεταξύ των επιφανειών επαφής των δύο σωμάτων είναι μs, ενώ δεν υπάρχει τριβή μεταξύ του κάτω σώματος και του δαπέδου. Όπως φαίνεται στο σχήμα, οι σταθερές του δεξιού και του αριστερού ελατηρίου είναι k και 3k, αντίστοιχα. Τα σώματα έχουν ίσες μάζες m
Να βρείτε το μέγιστο πλάτος ταλάντωσης του συστήματος  για το οποίο το πάνω σώμα δεν ολισθαίνει ως προς το κάτω.

Δείτε:

Σάββατο 22 Δεκεμβρίου 2012

ΑΞΙΟΠΟΙΩΝΤΑΣ ΤΗ ΣΧΕΣΗ ΤΗΣ ΕΛΑΧΙΣΤΗΣ ΑΚΕΡΑΙΑΣ ΑΝΑΛΟΓΙΑΣ ΣΤΑ ΠΕΡΙΟΔΙΚΑ ΦΑΙΝΟΜΕΝΑ


Ήμουν μαθητής  στην πρώτη τάξη Λυκείου όταν ο καθηγητής μας της Άλγεβρας  μας έθεσε το ερώτημα:
«Δύο κινητά εκτελούν ομαλή κυκλική κίνηση κινούμενα δεξιόστροφα πάνω στην ίδια περιφέρεια κύκλου με περιόδους Τ1 = 2,5 min και T2 =  6 min, αντίστοιχα. Σε πόσο χρόνο μετά από μια συνάντησή τους θα ξανασυναντηθούν στο ίδιο σημείο;»
 Θυμάμαι ότι δυσκολευτήκαμε.  Ήταν η πρώτη φορά που ανακαλύπταμε τη χρησιμότητα της ελάχιστης ακέραιας αναλογίας. Έχω, λοιπόν, ένα απωθημένο, με βάση το οποίο διαμορφώθηκε το ερώτημα Γ στην άσκηση που ακολουθεί.

Τα δύο σώματα Σ1 και Σ2 με μάζες M = 6 kgr και m = 1 kgr, αντίστοιχα, ισορροπούν δεμένα  μεταξύ τους με ένα τεντωμένο κατακόρυφο αβαρές σχοινί. Το καθένα είναι στερεωμένο στο άκρο ενός ελατηρίου, όπως στο σχήμα. Τα δύο ελατήρια έχουν σταθερές σκληρότητας k1 = 150 N/m και k2 = 100 N/m,  και οι θέσεις ισορροπίας των κέντρων των δύο σωμάτων βρίσκονται πάνω στην ίδια κατακόρυφο. Το πάνω ελατήριο είναι παραμορφωμένο κατά 0,4 m.

Α. Να βρείτε την παραμόρφωση Δℓ1 του κάτω ελατηρίου.  
B. Κάποια στιγμή (t = 0) κόβουμε το σχοινί και τα δύο σώματα αρχίζουν να εκτελούν α.α.τ. Πόση είναι η ενέργεια ταλάντωσης κάθε συστήματος «ελατήριο – μάζα»;
Γ.  Ποια χρονική στιγμή, μετά την έναρξη της ταλάντωσης, θα βρεθούν τα κέντρα των δύο σωμάτων για πρώτη φορά στην ελάχιστη μεταξύ τους απόσταση;
Δ. Με ποιο ...

Δείτε:

Δευτέρα 17 Δεκεμβρίου 2012

1ο Τρίωρο ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΚΥΜΑΤΑ

Ένα "Δώρο" για τις Γιορτές στους Αγαπητούς Μαθητές και Συναδέλφους!


….…. Β.3.  Δίνεται το ποτήρι του σχήματος.  Έχει γυάλινο πυθμένα και περιέχει υγρό με δείκτες διάθλασης nγυαλ = 1,5 και nυγρ  = 1,2, αντίστοιχα, για την ίδια μονοχρωματική ακτινοβολία. Μια ακτίνα αυτής της ακτινοβολίας πέφτει στη βάση του ποτηριού με γωνία προσπτώσεως π.  Είναι δυνατόν η ακτίνα να πάθει ολική ανάκλαση στη διαχωριστική επιφάνεια γυαλιού – υγρού, αν μεταβάλλουμε τη γωνία π από 0ο έως 90ο; Δίνεται nαέρα= 1. 
…………………

Δείτε: 

Πέμπτη 6 Δεκεμβρίου 2012

ΜΙΑ ΦΘΙΝΟΥΣΑ ΚΑΙ Η ΕΞΕΛΙΞΗ ΤΗΣ ΔΥΝΑΜΗΣ ΑΠΟΣΒΕΣΗΣ ΣΕ ΟΡΙΣΜΕΝΗ ΘΕΣΗ

Το σώμα Σ μάζας Μ = 0,6 kgr ισορροπεί δεμένο στο κάτω άκρο κατακόρυφου ελατηρίου σταθεράς k = 40 N/m, που το άλλο άκρο του είναι στερεωμένο σε ακλόνητο στήριγμα. Ένα βλήμα μάζας m = 0,4 kgr κινούμενο κατακόρυφα προς τα πάνω και στην προέκταση του άξονα του ελατηρίου, συγκρούεται πλαστικά με το σώμα, έχοντας αμέσως πριν την κρούση ταχύτητα υ0 = 10 m/s.
Το συσσωμάτωμα που δημιουργείται αρχίζει να εκτελεί φθίνουσα ταλάντωση με δύναμη απόσβεσης ανάλογη με την ταχύτητα (Fαπ = - bυ).
Α. Αν η αρχική επιτάχυνση του συσσωματώματος είναι α =-4,4 m/s2,  να υπολογίσετε τη σταθερά απόσβεσης b. (Θεωρείστε θετική την προς τα πάνω φορά και τη διάρκεια κρούσης αμελητέα).
Β. Πόση ενέργεια θα χάσει το συσσωμάτωμα εξαιτίας του έργου της Fαποσβ. μέχρι να σταματήσει μόνιμα;
Γ. Έστω ότι δυο διαφορετικές χρονικές στιγμές t1 και t2 (t2 > t1) το συσσωμάτωμα διέρχεται από την ίδια θέση Α, για την οποία είναι xA = + 0,006 m, κινούμενο προς την ίδια κατεύθυνση, με ίδια επιτάχυνση μέτρου αΑ = 0,1 m/s2.
Γ1. Να εξετάσετε αν το σώμα πλησιάζει ή απομακρύνεται από τη θέση x = 0 (όπως στις αμείωτες έτσι και στις φθίνουσες ταλαντώσεις η θέση αυτή θεωρούμε ότι είναι η θέση όπου η δύναμη επαναφοράς, Fεπαναφ. είναι μηδέν).
Γ2. Να προσδιορίσετε τη φορά και το μέτρο της δύναμης απόσβεσης τη χρονική στιγμή t1 και τη χρονική στιγμή t2.
Δ. Να υπολογίσετε την απώλεια ενέργειας του συστήματος στη διάρκεια t2t1.
[Δίνεται: g = 10 m/s2]



Τετάρτη 21 Νοεμβρίου 2012

Απώλεια επαφής σε μια εξαναγκασμένη ταλάντωση


Το σύστημα αρχικά βρίσκεται σε κατάσταση ηρεμίας. Αρχίζουμε να περιστρέφουμε αργά – αργά τον  τροχό αυξάνοντας σταδιακά τη συχνότητα περιστροφής του και διαπιστώνουμε ότι μέχρι μια ορισμένη συχνότητα f1 = 5/π Hz ο δίσκος και το σώμα ταλαντώνονται ευρισκόμενα συνεχώς σε επαφή.
Α. Αν πάνω από τη συχνότητα αυτή το σώμα και ο δίσκος δεν μπορούν να βρίσκονται συνέχεια σε επαφή, πόσο είναι το πλάτος της ταλάντωσης με τη συχνότητα f1;


Β. Αν η μάζα του σώματος είναι m = 1 kgr, πόση είναι η μέγιστη δύναμη που δέχεται από το δίσκο όταν η συχνότητα ταλάντωσης είναι ίση με f1;
Θεωρείστε τη μάζα του ελατηρίου και του σχοινιού αμελητέα και ότι και g = 10 m/s2

Για το Β ερώτημα δίνεται ότι, αν υπάρχει δύναμη απόσβεσης αυτή ενεργεί μόνο στο δίσκο και όχι στο σώμα.
Δείτε: