Όποιος σκορπίζει γνώση κερδίζει χαρά!!

Πέμπτη, 10 Οκτωβρίου 2013

  • Σύστημα “οριζόντιο ελατήριο – Μάζα” και ανελαστική κρούση

                     3η:  ΣΥΓΚΡΟΥΣΗ – ΜΕΓΙΣΤΗ ΑΠΟΣΤΑΣΗ                                              
Παρακολουθείστε τη συζήτηση δύο μαθητών στην προσπάθειά τους να λύσουν ένα πρόβλημα φυσικής. Ο ακροατής, εν προκειμένω ο αναγνώστης, έχει τη ευκαιρία να παρακολουθήσει και τις σκέψεις των μαθητών που δεν μπορούν να καταγραφούν σε μια επίσημη λύσηΝα γνωρίσει δηλαδή πώς αντιπαρέρχονται μια λάθος σκέψη, πώς ο ένας διορθώνει ή συμπληρώνει τον άλλον, τον τρόπο που ανταλλάσσουν τις εμπειρίες τους, τα κόλπα που χρησιμοποιεί ο ένας ή ο άλλος, πώς θα προτιμούσαν να είναι η άσκηση, τι δεν τους αρέσει στην εκφώνηση, πώς ο «δυνατός» μαθητής βοηθάει τον «αδύνατο» κ.λπ.  Έχει ενδιαφέρον. Απολαύστε τους!
  • Στις ανελαστικές κρούσεις, μετά την εφαρμογή Α.Δ.Ο και Α.Δ.Ε, προκύπτει σύστημα εξισώσεων που ανάγονται στη λύση εξίσωσης 2ου βαθμού. Η επίλυση οδηγεί συνήθως σε δύο ζεύγη τιμών από τα οποία το ένα πολλές φορές, εδώ στη Φυσική, πρέπει να αποκλειστεί.
  • Όταν μας ζητούν τη μέγιστη ή ελάχιστη απόσταση μεταξύ δύο κινητών, αφού μελετήσουμε την κίνηση του καθενός καταλήγουμε πάντα στο ίδιο συμπέρασμα: η απόσταση  γίνεται μέγιστη ή ελάχιστη όταν οι ταχύτητες εξισώνονται.

 
Το σώμα Σ2 έχει μάζα m = 1kgr και ισορροπεί πάνω σε λείο οριζόντιο δάπεδο στερεωμένο στο άκρο οριζόντιου ελατηρίου σταθεράς k = 100 N/m, όπως στο σχήμα.  Ένα άλλο σώμα Σ1 μάζας 2m κινούμενο στην προέκταση του άξονα του ελατηρίου προσπίπτει στο πρώτο με ταχύτητα υ1 = 10 m/s. Αμέσως μετά τη σύγκρουση το σύστημα έχει, λόγω απωλειών, κινητική ενέργεια μικρότερη, ίση με τα ¾ της κινητικής ενέργειας πριν την κρούση, ενώ το Σ2 ξεκινά μια α.α.τ.
Α. Να βρείτε τις ταχύτητες των σωμάτων αμέσως μετά την κρούση.
Β. Να εξηγήσετε γιατί κάποια στιγμή η απόσταση των δύο σωμάτων …
Δείτε:

Δεν υπάρχουν σχόλια :

Δημοσίευση σχολίου