Η φύση αγαπά την αλήθεια, και η αλήθεια της φύσης διεκδικεί το δικαίωμα να εκτίθεται μόνο σε όσους την ποθούν.

Τρίτη, 3 Δεκεμβρίου 2013

ΜΙΑ ΕΥΚΟΛΗ ΑΣΚΗΣΗ ΚΑΙ ΜΙΑ «ΕΠΙΚΙΝΔΥΝΗ» ΠΑΡΑΛΛΑΓΗ ΤΗΣ 

  • Α. Η άσκηση
Ένα σώμα μάζας 1 kg ηρεμεί σε λείο οριζόντιο δάπεδο στη θέση Ο, δεμένο στο άκρο οριζόντιου ελατηρίου σταθεράς k=100 Ν/m. Το άλλο άκρο του ελατηρίου είναι σταθερά στερεωμένο σε ακλόνητο στήριγμα. Κάποια στιγμή, που τη θεωρούμε αρχή μέτρησης του χρόνου (t = 0), ασκούμε στο σώμα μια σταθερή οριζόντια δύναμη μέτρου F0 =10 Ν, όπως στο σχήμα, οπότε αρχίζει να ολισθαίνει κατά μήκος του ημιάξονα Οx.
α. Να αποδείξετε ότι το σώμα θα εκτελέσει α.α.τ. και να προσδιορίσετε τη σχέση της μετατόπισής του από τη θέση Ο σε συνάρτηση με το χρόνο. (Θεωρείστε την προς τα δεξιά κατεύθυνση ως θετική και x =
0 στο θέση Ο).
β. Να βρείτε την εξίσωση της επιτάχυνσης του σώματος σε συνάρτηση με τη θέση του και να κάνετε τη γραφική της παράσταση.


  •  
    Β. Η «επικίνδυνη» παραλλαγή της
Ένα σώμα μάζας m ηρεμεί αρχικά στη θέση Ο του άξονα xOx΄. Με τη βοήθεια κατάλληλου μηχανισμού αρχίζει, τη στιγμή t = 0, να κινείται προς τη θετική κατεύθυνση του άξονα με επιτάχυνση α = α0 – βx, όπου α0 και β γνωστές σταθερές ποσότητες και x η απόστασή  του από την αρχή Ο.
α. Να αποδείξετε ότι το σώμα θα κάνει α.α.τ.
β. Να προσδιορίσετε τις ακραίες θέσεις και τη θέση ισορροπίας της  ταλάντωσης.
 γ. Πόση είναι η μέγιστη ταχύτητα και η ενέργεια της ταλάντωσης του σώματος;
 δ. Ποια χρονική στιγμή το σώμα θα σταματήσει για πρώτη φορά; 

Απάντηση
α. Είναι:   α = α0 – βx mα = mα0mβx ΣF = F0Dx
(όπου D=mβ και F0=mα0 ).
Έστω Ι η θέση ισορροπίας και x1 η απόστασή της από την αρχή Ο. Στη θέση αυτή θα ισχύει                    
                                     ΣF = 0 x1 = F0/D                                        (1)
Σε μια τυχαία θέση σε απόσταση x΄ δεξιά από τη θέση Ι (προς τη θετική φορά) θα ισχύει:
                           ΣF = F0D(x΄ + x1) = (λόγω της σχέσης 1)= -Dx΄
Δηλαδή, για να κινηθεί το  σώμα με την επιτάχυνση που μας δίνεται, πρέπει να ασκηθεί πάνω του συνισταμένη δύναμη ανάλογη με τη μετατόπισή  του από τη θέση μηδενισμού της επιτάχυνσης και αντίθετη με αυτήν. Άρα θα εκτελέσει α.α.τ.
β. Η αριστερή ακραία θέση είναι προφανώς η αρχή Ο και η δεξιά βρίσκεται σε απόσταση 2F0/D = 2mα0/mβ = 2α0/β  από αυτήν. Η Θέση ισορροπίας είναι η Ι, σε απόσταση x1 = F0/k = α0/β από την Ο (όσο και το πλάτος Α της ταλάντωσης).
γ. Είναι: D = mω2mβ = mω2 ↔ ω =  β   και Α = α0/β, άρα η μέγιστη ταχύτητα ισούται με υμεγ = ωΑ = ( β 0/β = α0/ β .
δ. Είναι Τ = 2π m/D  = 2π m/mβ  = 2π/ β . Συνεπώς θα σταματήσει για πρώτη φορά τη στιγμή t = π/ β .

Τετάρτη, 6 Νοεμβρίου 2013

ΕΠΑΛΛΗΛΙΑ ΚΙΝΗΣΕΩΝ ΚΑΙ ΑΡΧΗ ΔΙΑΤΗΡΗΣΗΣ ΤΗΣ ΕΝΕΡΓΕΙΑΣ


Ένας μαθητής μου έστειλε την ακόλουθη επιστολή:
Γεια σας.
Λέγομαι Δήμος και είμαι μαθητής της Γ τάξης του Γενικού Λυκείου, από την Καβάλα. Αρχικά θα ήθελα να σας συγχαρώ για την ιστοσελίδα σας και το εξαιρετικό υλικό που προσφέρει. Δεύτερον, και κύριος λόγος που σας στέλνω αυτό το μήνυμα είναι γιατί έχω μια απορία όσον αφορά την σύνθεση ταλαντώσεων. 
Έχω λοιπόν ένα σώμα που εκτελεί ταυτόχρονα δυο αρμονικές ταλαντώσεις γύρω από την ίδια θέση ισορροπίας και στην ίδια ευθεία. Οι δυο αυτές ταλαντώσεις έχουν το ίδιο πλάτος, ίδια συχνότητα και ίδια φάση. Επομένως, εάν δεν κάνω λάθος το τελικό αποτέλεσμα της σύνθεσης είναι ότι το σώμα εκτελεί ταλάντωση με πλάτος 2Α. Αυτό που δεν καταλαβαίνω είναι τι γίνεται με την ενέργεια.  Εννοώ ότι οι δυο ταλαντώσεις έχουν η καθεμία ενέργεια Ε (γιατί τα πλάτη είναι ίσα), το σώμα όμως εκτελεί ταλάντωση με ενέργεια 4Ε (τουλάχιστον αυτό νομίζω εγώ).Τελικά πού βρέθηκε η επιπλέον ενέργεια 2Ε, πώς προέκυψε;  Θα το εκτιμούσα πολύ εάν γινόταν να μου απαντήσετε. Ευχαριστώ για τον κόπο σας. 
 Είναι αλήθεια ότι το ερώτημα αυτό το δέχονται πολλοί συνάδελφοι. Η συνήθης απάντηση που δίνουμε είναι ...

Συνέχεια ...

Παρασκευή, 11 Οκτωβρίου 2013

                     ΣΥΣΤΗΜΑ «ΟΡΙΖΟΝΤΙΟ ΕΛΑΤΗΡΙΟ – ΜΑΖΑ» ΚΑΙ ΚΡΟΥΣΗ                                              ΤΡΕΙΣ ΑΣΚΗΣΕΙΣ ΠΟΥ «ΣΥΛΛΗΦΘΗKΑΝE» ΣΤΟΝ ΠΙΝΑΚΑ ΜΑΖΙ ΜΕ ΤΟΥΣ ΜΑΘΗΤΕΣ

Αν νομίζετε ότι στις κρούσεις με σύστημα οριζόντιο ελατήριο – σώμα τα πράγματα είναι πιο απλά … ίσως πρέπει να το ξανασκεφτείτε!
: ΔΥΟ «ΦΟΡΤΩΜΕΝΟΙ ΜΕ ΒΑΡΗ» ΑΠΛΟΙ ΑΡΜΟΝΙΚΟΙ ΤΑΛΑΝΤΩΤΕΣ ΕΛΕΥΘΕΡΩΝΟΝΤΑΙ ΑΠΟ ΑΥΤΑ ΚΑΙ ΣΥΓΚΡΟΥΟΝΤΑΙ
Αρχικά, τα κάτω άκρα των σχοινιών είναι ελεύθερα χωρίς βάρη και τα σώματα Σ1 και Σ2 ισορροπούν ευρισκόμενα σε επαφή στη θέση Φ πάνω σε οριζόντιο επίπεδο. Στην κατάσταση αυτή τα ελατήρια έχουν το φυσικό τους μήκος. Κρεμάμε στα ελεύθερα άκρα των σχοινιών σώματα με μάζες ίσες με των σωμάτων που είναι δεμένα στο άλλο άκρο τους και τα αφήνουμε σιγά - σιγά ώσπου όλα τα σώματα να ισορροπήσουν στις θέσεις που φαίνονται στο σχήμα.
    Κάποια στιγμή κόβουμε ταυτόχρονα και τα δύο σχοινιά.
Α. Να βρείτε σε ποια θέση και ποια χρονική στιγμή θα συγκρουστούν τα Σ1 και Σ2.
Β. Να δείξετε ότι στην παραπάνω θέση καθένα από τα σώματα Σ1 και Σ2 έχει (μια στιγμή αμέσως πριν την κρούση) ταχύτητα ίση με 2/π φορές την ταχύτητα που έχουν την ίδια στιγμή τα σώματα που πέφτουν ελεύθερα.
Γ. Αν η κρούση είναι πλαστική,
Γ.1. Να δείξετε ότι το συσσωμάτωμα θα κάνει α.α.τ. και να υπολογίσετε τη σταθερά επαναφοράς.
Γ.2. Να βρείτε τη σχέση που συνδέει …
Δείτε:

Πέμπτη, 10 Οκτωβρίου 2013

  • Σύστημα “οριζόντιο ελατήριο – Μάζα” και ανελαστική κρούση

                   2η:  ΚΡΟΥΣΗ ΣΤΗ Θ.Ι ΚΑΙ ΕΠΑΝΑΚΡΟΥΣΗ ΣΤΗΝ ΑΚΡΑΙΑ ΘΕΣΗ                        
 Στην ταυτόχρονη κίνηση δύο κινητών που καταλήγει σε συνάντηση, αξιοποιούμε δύο σχέσεις:
  •  Της ισότητας των χρόνων κίνησης και
  • Τη σχέση των διανυθέντων διαστημάτων.
Τα δύο σώματα Σ1 και Σ2 έχουν μάζες 2m και m, αντίστοιχα. Αρχικά το Σ2 ισορροπεί στερεωμένο στο ένα άκρο οριζόντιου ελατηρίου, όπως στο σχήμα, ενώ το Σ1 κινείται προς αυτό κατά μήκος της προέκτασης του άξονα του ελατηρίου με ταχύτητα υ1 = 10 m/s . Κάποια στιγμή τα δύο σώματα συγκρούονται. Τριβές δεν υπάρχουν.
Α. Αν μετά την κρούση οι ταχύτητες των δύο σωμάτων είναι τέτοιες ώστε να ξανασυγκρουστούν στη θέση μέγιστης συμπίεσης του ελατηρίου, να βρείτε τα μέτρα τους.
Β. Αν μεταξύ 1ης και 2ης κρούσης μεσολαβεί χρόνος (π/20) sec να βρείτε τη θέση όπου γίνεται η 2η κρούση.
Γ. Αν μετά την 1η κρούση η φυσική κατάσταση των σωμάτων …
Δείτε:

  • Σύστημα “οριζόντιο ελατήριο – Μάζα” και ανελαστική κρούση

                     3η:  ΣΥΓΚΡΟΥΣΗ – ΜΕΓΙΣΤΗ ΑΠΟΣΤΑΣΗ                                              
Παρακολουθείστε τη συζήτηση δύο μαθητών στην προσπάθειά τους να λύσουν ένα πρόβλημα φυσικής. Ο ακροατής, εν προκειμένω ο αναγνώστης, έχει τη ευκαιρία να παρακολουθήσει και τις σκέψεις των μαθητών που δεν μπορούν να καταγραφούν σε μια επίσημη λύσηΝα γνωρίσει δηλαδή πώς αντιπαρέρχονται μια λάθος σκέψη, πώς ο ένας διορθώνει ή συμπληρώνει τον άλλον, τον τρόπο που ανταλλάσσουν τις εμπειρίες τους, τα κόλπα που χρησιμοποιεί ο ένας ή ο άλλος, πώς θα προτιμούσαν να είναι η άσκηση, τι δεν τους αρέσει στην εκφώνηση, πώς ο «δυνατός» μαθητής βοηθάει τον «αδύνατο» κ.λπ.  Έχει ενδιαφέρον. Απολαύστε τους!
  • Στις ανελαστικές κρούσεις, μετά την εφαρμογή Α.Δ.Ο και Α.Δ.Ε, προκύπτει σύστημα εξισώσεων που ανάγονται στη λύση εξίσωσης 2ου βαθμού. Η επίλυση οδηγεί συνήθως σε δύο ζεύγη τιμών από τα οποία το ένα πολλές φορές, εδώ στη Φυσική, πρέπει να αποκλειστεί.
  • Όταν μας ζητούν τη μέγιστη ή ελάχιστη απόσταση μεταξύ δύο κινητών, αφού μελετήσουμε την κίνηση του καθενός καταλήγουμε πάντα στο ίδιο συμπέρασμα: η απόσταση  γίνεται μέγιστη ή ελάχιστη όταν οι ταχύτητες εξισώνονται.

 
Το σώμα Σ2 έχει μάζα m = 1kgr και ισορροπεί πάνω σε λείο οριζόντιο δάπεδο στερεωμένο στο άκρο οριζόντιου ελατηρίου σταθεράς k = 100 N/m, όπως στο σχήμα.  Ένα άλλο σώμα Σ1 μάζας 2m κινούμενο στην προέκταση του άξονα του ελατηρίου προσπίπτει στο πρώτο με ταχύτητα υ1 = 10 m/s. Αμέσως μετά τη σύγκρουση το σύστημα έχει, λόγω απωλειών, κινητική ενέργεια μικρότερη, ίση με τα ¾ της κινητικής ενέργειας πριν την κρούση, ενώ το Σ2 ξεκινά μια α.α.τ.
Α. Να βρείτε τις ταχύτητες των σωμάτων αμέσως μετά την κρούση.
Β. Να εξηγήσετε γιατί κάποια στιγμή η απόσταση των δύο σωμάτων …
Δείτε:

                    ΑΠΩΛΕΙΑ ΕΠΑΦΗΣ «ΑΠΟ ΤΗΝ ΑΝΑΠΟΔΗ»

  • Απώλεια επαφής δύο σωμάτων, που το ένα είναι δεμένο σε ελατήριο θα συμβεί, ο κόσμος να χαλάσει, στη θέση όπου το ελατήριο αποκτά το φυσικό του μήκος. Εκεί, η ΣF σε κάθε σώμα είναι ίση με το βάρος του και η επιτάχυνση ίση με g.

Το σώμα Σ2 του σχήματος είναι δεμένο στο κάτω άκρο  ενός αβαρούς σχοινιού το οποίο διέρχεται από μια  κατακόρυφη οπή του Σ1. Το Σ1 είναι δεμένο στο κάτω άκρο ενός κατακόρυφου ιδανικού ελατηρίου σταθεράς k = 100 N/m. Το πάνω άκρο του ελατηρίου είναι στερεωμένο σε σταθερό σημείο. Τα δύο σώματα έχουν ίσες μάζες m1 = m2 = m = 1 kg και ισορροπούν ευρισκόμενα σε επαφή, χωρίς να είναι κολλημένα μεταξύ τους,  σε μια θέση όπου το ελατήριο είναι συμπιεσμένο κατά Δℓ με τη βοήθεια δύναμης F =100 N που ασκείται στο άλλο άκρο του σχοινιού.
(Στο σχήμα, τα Φ και Ι είναι δυο σημεία από τα οποία διέρχεται το κέντρο του Σ1 όταν, αντίστοιχα, το ελατήριο έχει μηδενική παραμόρφωση και όταν τα δύο σώματα ισορροπούν).
Κάποια στιγμή το σχοινί κόβεται και τα δύο σώματα αρχίζουν να κινούνται προς τα κάτω.
Α.  Εξηγείστε γιατί η επαφή των δύο σωμάτων δεν χάνεται αμέσως, αλλά αφού πρώτα διανύσουν κάποιο διάστημα. Σε ποια θέση χάνεται η επαφή και πόσο είναι αυτό το διάστημα;
Β. Να βρεθεί το πλάτος ταλάντωσης του Σ1 μετά το αποχωρισμό των σωμάτων.
Γ. Σε ποια θέση βρίσκεται το Σ1
Δείτε:

Παρασκευή, 4 Οκτωβρίου 2013


  • Σύστημα “κατακόρυφο ελατήριο - σώμα” και πλαστική κρούση.
  • 5η περίπτωση:  (Χρήση βαθμολογημένου άξονα - Επίπεδο δυσκολίας 5, «ψυχραιμία!»)
  • Το συσσωμάτωμα ξεκινά ταλάντωση με αρχική φάση 3π/2  
Στο πάνω άκρο ενός κατακόρυφου ελατηρίου σταθεράς k = 400 Ν/m είναι στερεωμένο και ισορροπεί στη θέση Ι ένα σώμα μάζας Μ = 1 kgr (σχήμα α).       Το κάτω άκρο του ελατηρίου είναι μόνιμα στερεωμένο στο έδαφος.
 Απομακρύνουμε το σώμα κατακόρυφα προς τα κάτω κατά d = 0,1 2 m, ως τη θέση Β (σχήμα β) και το αφήνουμε ελεύθερο χωρίς αρχική ταχύτητα, οπότε ξεκινά να κάνει α.α.τ.
 Ένα δεύτερο σώμα ίδιας μάζας m = 3 kgr  κινείται κατακόρυφα προς τα κάτω και στην πορεία  του συναντάει το ταλαντευόμενο σώμα στη θέση x1 = -0,1 m κάτω από τη θέση ισορροπίας του με ταχύτητα υ0  (σχήμα γ) και συγκρούεται πλαστικά με αυτό.
Μετά την κρούση το συσσωμάτωμα που προέκυψε ξεκινάει, χωρίς αρχική ταχύτητα, μια α.α.τ. (σχήμα δ).
Α. Να υπολογίσετε ….

     Δείτε:

Κυριακή, 29 Σεπτεμβρίου 2013

  • Σύστημα “κατακόρυφο ελατήριο - σώμα” και πλαστική κρούση.
  • 4η περίπτωση: (Επίπεδο δυσκολίας 4, «όχι και τόσο φοβερή!»)
  • ΟΠΟΥ Το συσσωμάτωμα ξεκινά ταλάντωση με αρχική φάση π και τετραπλάσια ενέργεια

 
Στο πάνω άκρο ενός κατακόρυφου ελατηρίου σταθεράς k είναι στερεωμένο και ισορροπεί στη θέση Ι ένα σώμα Σ1 μάζας Μ = 1 kgr (σχήμα α). Το κάτω άκρο είναι στερεωμένο στο έδαφος.
Ανεβάζουμε το σώμα ως τη θέση Φ, όπου το ελατήριο έχει μηδενική παραμόρφωση, (σχήμα β) και το αφήνουμε ελεύθερο να πέσει με μηδενική αρχική ταχύτητα. Το σώμα αρχίζει να κάνει α.α.τ. (σχήμα γ).
Ένα δεύτερο σώμα Σ2 μάζας m κινείται κατακόρυφα προς τα κάτω και στην πορεία  του συναντάει το Σ1 στην κάτω ακραία θέση του με ταχύτητα υ0  (σχήμα δ) και συγκρούεται πλαστικά με αυτό.
Κατά την κρούση μετατρέπεται σε θερμότητα το 50% της κινητικής ενέργειας που είχε το σύστημα αμέσως πριν την κρούση.
Μετά την κρούση (που θεωρούμε ότι συμβαίνει τη στιγμή t=0) το συσσωμάτωμα που προέκυψε ξεκινάει μια α.α.τ. με γωνιακή συχνότητα ω = 10 r/s και ενέργεια ταλάντωσης τετραπλάσια της αντίστοιχης του Σ1 πριν την κρούση.

Να υπολογίσετε: ....


Παρασκευή, 20 Σεπτεμβρίου 2013

ΔΥΟ ΜΑΘΗΤΕΣ ΑΝΤΙΜΕΤΩΠΟΙ ΜΕ ΤΗΝ Α.Α.Τ ΣΥΣΤΗΜΑΤΟΣ «ΙΔΑΝΙΚΟΥ ΚΑΤΑΚΟΡΥΦΟΥ ΕΛΑΤΗΡΙΟΥ -  ΜΑΖΑΣ»  ΣΕ ΠΕΔΙΟ ΒΑΡΥΤΗΤΑΣ

   Το παρακάτω άρθρο, σε πολλά μικρά κομμάτια, είχε δημοσιευτεί πέρσι τον Αύγουστο. Αρκετοί συνάδελφοι μου το ζήτησαν (και το πήραν) σε ενιαία μορφή. Επειδή κάποιοι, λόγω του καλοκαιριού, ίσως δεν το πρόσεξαν, το ξαναδίνω στην κυκλοφορία σε τέσσερα μέρη, εμπλουτισμένο και με μια σχετική άσκηση.


  • Το πρώτο μέρος είναι αρκετά τυπικό και περιέχει βασικές γνώσεις α.α.τ. 
  • Το δεύτερο περιγράφει πώς δυο καλοί μαθητές μπορούν εύκολα να μπλέξουν "σαν τον Ηρακλή με τις κουβαρίστρες", ακριβώς επειδή είναι καλοί. Ευτυχώς που είναι δύο! 
  • Στο τρίτο μέρος οι συμμαθητές "γεννούν" μια ιδέα που ξεκαθαρίζει τη σχέση μεταξύ των τριών δυναμικών ενεργειών: βαρύτητας, ελαστικότητας και ταλάντωσης. 

Το άρθρο διαβάζεται εύκολα και από μαθητές. Απαιτεί, ίσως, λίγο παραπάνω συγκέντρωση!


  • ΜΕΡΟΣ 1ο: Τα βασικά
  • ΜΕΡΟΣ 2ο:  Δυο μαθητές, στην προσπάθειά τους να δώσουν απάντηση σε μια ενδιαφέρουσα ερώτηση, ανεβάζουν απρόσμενα ψηλά τον πήχη
  • ΜΕΡΟΣ 3ο: Η Μηχανική ενέργεια ταλάντωσης συστήματος "κατακόρυφου ελατηρίου – μάζας" και μια «σημαντική ανακάλυψη».
  • ΜΕΡΟΣ 4ο: Όλες οι δυναμικές ενέργειες μαζί. (Μια άσκηση με τη λύση της)

Πέμπτη, 19 Σεπτεμβρίου 2013

  • Σύστημα “κατακόρυφο ελατήριο - σώμα” και πλαστική κρούση
  • 3η περίπτωση:  (Επίπεδο δυσκολίας 3, +μια απορία!)
  • ΟΠΟΥ Tο συσσωμάτωμα ξεκινά ταλάντωση με αρχική φάση Π/2. (ΤΑΛΑΝΤΩΣΗ ΣΥΣΤΗΜΑΤΟΣ ΕΠΕΙΤΑ ΑΠΟ ΟΛΙΚΗ ΑΠΩΛΕΙΑ ΤΗΣ ΚΙΝΗΤΙΚΗΣ ΤΟΥ ΕΝΕΡΓΕΙΑΣ)
Το σώμα Σ1 μάζας Μ = 1 kgr ισορροπεί στερεωμένο στο κάτω άκρο κατακόρυφου ιδανικού ελατηρίου (σχήμα α). Το τραβάμε προς τα κάτω και κάποια στιγμή το αφήνουμε ελεύθερο χωρίς αρχική ταχύτητα (σχήμα β). Το σώμα τότε ξεκινάει μια απλή αρμονική ταλάντωση (σχήμα γ) με τα εξής χαρακτηριστικά:
1. Ο ελάχιστος χρόνος μετάβασης από τη μία ακραία θέση στην άλλη είναι 0,1π sec.
2. Η πάνω ακραία θέση είναι η Φ, όπου η παραμόρφωση του ελατηρίου είναι μηδέν.
Α. Να βρείτε τη σταθερά k του ελατηρίου και το πλάτος της ταλάντωσης του Σ1.
    Κάποια στιγμή καθώς το σώμα Σ1 διέρχεται από τη θέση ισορροπίας του, προσπίπτει πάνω του και συγκολλιέται με αυτό, ένα άλλο σώμα Σ2 μάζας m που κινείται προς τα πάνω κατακόρυφα στην προέκταση του άξονα του ελατηρίου με ταχύτητα υ0 τέτοια, ώστε το συσσωμάτωμα που δημιουργείται να έχει αμέσως μετά την κρούση ταχύτητα μηδέν.
Β.  Αν η ενέργεια ταλάντωσης του συσσωματώματος  είναι ίση με 64% της αρχικής ενέργειας ταλάντωσης του Σ1, να βρείτε τη μάζα m του Σ2.
Γ. Εξηγείστε γιατί το υπόλοιπο 36% της αρχικής ενέργειας ταλάντωσης του Σ1, δεν .......

  • Ολόκληρη η άσκηση εδώ, και
  • Η Λύση εδώ.

Δευτέρα, 16 Σεπτεμβρίου 2013

Διαγράμματα Ut  και  K - t  σε  α.α.τ.  με αρχική φάση. (Μια πραγματική ιστορία)

  • Οι Φυσικοί οφείλουμε να γνωρίζουμε ποια Μαθηματικά διδάσκονται οι μαθητές μας. Έτσι, σε πρώτη ευκαιρία, θα τους ενθαρρύνουμε να τα χρησιμοποιούν στην επεξεργασία θεμάτων Φυσικής. Και οι μαθητές μας θα αντιληφθούν πόσο εύκολο είναι να πορευθούν μέσα στο χώρο της φυσικής έχοντας ένα ισχυρό μαθηματικό υπόβαθρο.

     Συζητούσα με το μαθητή μου τον Αλέξανδρο για τις γραφικές παραστάσεις των U = f(t) και K = f(t) στην α.α.τ. Σκέφτηκα, αρχικά να μην τον μπλέξω με αρχικές φάσεις κι έτσι καταλήξαμε στις σχέσεις U = Eημ2ωt και K = Eσυν2ω t, των οποίων οι γραφικές παραστάσεις αποδίδονται από το διάγραμμα:

    Του είπα να προσέξει στο σχεδιασμό των καμπυλών, ώστε αυτές να τέμνονται ακριβώς στο ύψος Ε/2. Να προσέξει επίσης τη συμμετρία των καμπυλών, απ’ όπου προκύπτει ότι οι ενέργειες  εξισώνονται τις χρονικές στιγμές Τ/8, 3Τ/8, 5Τ/8, 7Τ/8 (4 φορές) στη διάρκεια της 1ης περιόδου.
    Ήρθε και η απορία στο μυαλό του Αλέξανδρου: κι αν έχουμε αρχική φάση π/2;  Φυσικά τότε  U = Eημ2t+π/2) και K = Eσυν2t+ π/2). Προσέξαμε ότι τη στιγμή t= 0 είναι U = E και  Κ= 0, οπότε στο νέο διάγραμμα οι καμπύλες θα είναι αντεστραμμένες:
    Και αν φ0 = π;  Εύκολα προκύπτει ότι ακολουθεί και δεύτερη αντιστροφή των καμπυλών οπότε καταλήγουμε στο 1­ο­ διάγραμμα, όπου φ0 = 0. Όμοια, αν φ0 =3π/2 ακολουθεί άλλη μια περιστροφή ακόμη και καταλήγουμε στο 2ο διάγραμμα, κ.λπ.

    Και ήταν τότε που μου ήρθε η «φαεινή» ιδέα να δώσω στον Αλέξανδρο να σχεδιάσει τις καμπύλες με φ0 = π/6 και να βρει, μάλιστα, τις χρονικές στιγμές όπου U = ...



Τρίτη, 10 Σεπτεμβρίου 2013

Σύστημα “κατακόρυφο ελατήριο - σώμα” και πλαστική κρούση
2η περίπτωση:  (Επίπεδο δυσκολίας 2, «η πιο έξυπνη!»)
ΌΠΟΥ Το συσσωμάτωμα ξεκινά ταλάντωση με αρχική φάση μηδέν

  Στο κάτω άκρο ενός κατακόρυφου ελατηρίου σταθεράς k είναι στερεωμένο και ισορροπεί στη θέση Ι ένα σώμα μάζας Μ = 1 kgr (σχήμα α).
 Ανεβάζουμε το σώμα ως τη θέση Φ, όπου το ελατήριο έχει μηδενική παραμόρφωση (σχήμα β) και το αφήνουμε ελεύθερο να πέσει με μηδενική αρχική ταχύτητα. Το σώμα αρχίζει να κάνει α.α.τ.
   Ένα δεύτερο σώμα μάζας m  κινείται κατακόρυφα προς τα πάνω και στην πορεία του συναντάει το ταλαντευόμενο σώμα στην κάτω ακραία θέση του με ταχύτητα υ0  (σχήμα γ) και συγκρούεται πλαστικά με αυτό. Μετά την κρούση (που θεωρούμε ότι συμβαίνει τη στιγμή t=0) το συσσωμάτωμα που προέκυψε ξεκινάει μια α.α.τ. με εξίσωση  ψ = Α΄ημ5t και με ανώτερη θέση τη Φ.
  Να υπολογίσετε: …
  • Κάντε λήψη ολόκληρης της άσκησης από εδώ.
  • Αναλυτική λύση εδώ.


Τρίτη, 3 Σεπτεμβρίου 2013

Ο Feynman συνέχισε:
  • Στην πραγματικότητα αυτό που κάνουμε είναι να ασχολούμαστε σε υπερβολικό βαθμό μ’ ένα συγκεκριμένο θέμα που δείχνει απόλυτα φυσιολογικό και συνηθισμένο. Οι άνθρωποι αναμφίβολα έχουν φαντασία, μόνο που δεν τη χρησιμοποιούν τόσο εντατικά. Όλοι μας διαθέτουμε δημιουργικότητα, αλλά οι επιστήμονες κάνουν χρήση της σε μεγαλύτερο βαθμό. Αυτό που δεν είναι συνηθισμένο είναι να τη χρησιμοποιείς με τόση ένταση ώστε όλη εκείνη η εμπειρία που συσσωρεύεται με τα χρόνια να αφορά στο ίδιο πάντα περιορισμένο θέμα.

Απόσπασμα από το “ουράνιο τόξο του Φάυνμαν” (Feynmans Rainbow) του Leonard Mlodinow, σε μετάφραση Δημοσθένη Κοντού εκδόσεις Αλεξάνδρεια.

ΚΑΛΗ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ!
  Αγαπητοί μαθητές και συνάδελφοι εύχομαι με καινούργια διάθεση και ανανεωμένες δυνάμεις να ξεκινήσετε άλλη μια φορά τη δημιουργική σας προσπάθεια για να κάνετε ακόμα φωτεινότερη μέσα σας τη σφαίρα της γνώσης, εσείς οι μαθητές, και να βελτιώσετε ως τα όρια της σοφίας την εμπειρία σας, εσείς οι συνάδελφοι.
  Είναι σίγουρο ότι από αυτήν εδώ τη γωνιά θα προσπαθήσουμε να χρησιμοποιήσουμε τη δημιουργικότητα και τη φαντασία μας πέρα από το συνηθισμένο, ώστε η συσσωρευμένη με τα χρόνια εμπειρία μας να έχει να προσθέσει κάτι νέο στα ίδια πάντα περιορισμένα θέματα.
                                                                                                               Τάσος Τζανόπουλος

Δευτέρα, 2 Σεπτεμβρίου 2013

ΜΙΑ «ΑΛΛΗ» ΕΚΔΟΧΗ ΓΙΑ ΤΙΣ ΑΣΚΗΣΕΙΣ Α.Α.Τ., ΒΑΣΙΣΜΕΝΗ ΣΕ ΕΞΙ ΙΔΕΕΣ

  • Σύστημα “κατακόρυφο ελατήριο - σώμα”
  • 1η περίπτωση:  (Επίπεδο δυσκολίας 1, η πιο εύκολη!)
  • α.α.τ φορτισμένου σφαιριδίου σε βαρυτικό και ηλεκτρικό πεδίο

Το μεταλλικό σφαιρίδιο του σχήματος έχει θετικό φορτίο q και μάζα m = 0,4 kgr. Το ελατήριο είναι ιδανικό (δηλ., έχει αμελητέα μάζα και υπακούει στο νόμο του Hooke) και έχει σταθερά k = 10 N/m. Το σύστημα βρίσκεται μέσα σε κατακόρυφο ομογενές Η.Π. έντασης τέτοιας ώστε το σώμα να ισορροπεί στη θέση όπου το ελατήριο έχει το φυσικό του μήκος.
  Εκτρέπουμε το σφαιρίδιο από τη θέση ισορροπίας του κατά τη διεύθυνση του άξονα του ελατηρίου και προς τα κάτω κατά d = 0,3m και μετά το αφήνουμε ελεύθερο, χωρίς αρχική  ταχύτητα.
Α. Να αποδειχτεί ότι το σφαιρίδιο θα κάνει α.α.τ. με σταθερά επαναφοράς D = k.
Β. Να υπολογίσετε το πλάτος και τη γωνιακή συχνότητα της α.α.τ.
Γ. Να γραφεί η σχέση της δύναμης ελατηρίου με το χρόνο θεωρώντας t =0 τη στιγμή που αφήνουμε τη σφαίρα.
Δ. Αν τη στιγμή που η σφαίρα περνά από τη θέση ισορροπίας της καταργήσουμε το Η.Π., ποιο θα είναι το πλάτος της νέας ταλάντωσης;


Θεώρησε τις απομακρύνσεις πάνω από τη θέση ισορροπίας θετικές και τις διαστάσεις του σφαιριδίου αμελητέες. Δίνεται g = 10 m/s2.

Μπορείτε να κάνετε λήψη της άσκησης σε PDF εδώ
Αναλυτική Λύση της Άσκησης θα βρείτε εδώ


Πέμπτη, 13 Ιουνίου 2013

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ















Τα θέματα σιγά-σιγά δυσκολεύουν. Γίνονται θέματα για πρωτοετείς φοιτητές Φυσικού τμήματος που στο κάτω – κάτω δε θα χάσουν το μάθημα αν γράψουν >5. Στις Πανελλήνιες όμως  η βάση  έχει μεγάλο κόστος στους υποψηφίους. Η ιδιομορφία στις φετινές επαναληπτικές ήταν πως απαιτούσαν από τους υποψηφίους καλό χειρισμό των βασικών γνώσεών τους στα μαθηματικά (απλοποιήσεις, παραγοντοποιήσεις, συστήματα εξισώσεων, γεωμετρία, τριγωνομετρία) … ακόμη και από το πρώτο ερώτημα του Θέματος Α.  

Ξεχωρίζουν τα θέματα Β.2. και Β.3. Παρόμοια ερώτηση με του Β.2, μαζί με αναλυτική απάντηση, (για να βλογάμε τα γένια μας) έχουμε αναρτήσει εδώ (4η ερώτηση).

Το Θέμα Γ ήταν κατά τη γνώμη μου το δυσκολότερο. Ώσπου να απαγκιστρωθεί ο μαθητής από την εικόνα που του πετάει η πρώτη φράση: « Σε κινούμενο τρένο … υπάρχει ηχητική πηγή που εκπέμπει ήχο συχνότητας fs … Τρένο 2  κινείται … αντίθετα και τη στιγμή t = 0 απέχει από το τρένο 1 απόσταση d » και να αποφασίσει πως δε θα βγάλει άκρη αν δε θεωρήσει ότι και ο ήχος αρχίζει να εκπέμπεται τη χρονική στιγμή t = 0, θα έχασε αναμφίβολα πολύτιμο χρόνο. Χάθηκε μια διευκρίνιση έστω και εκ των υστέρων; Γιατί θυμίζει αυτό ασάφειες σε προβλήματα που δίνουν σε φοιτητές; Και καλά οι φοιτητές μπορεί ή επιβάλλεται να υφίστανται τις συνέπειες του κανόνα "τα ευκόλως εννοούμενα παραλείπονται". Τα αγχωμένα σχολιαρόπαιδα όμως;  Ρε παιδιά τα θέματα είναι Πανελλαδικής και διαχρονικής εμβέλειας, δεν είναι θέματα για ένα τμήμα 50 -100 μαθητών! Κι από την άλλη μεριά, είναι σωστό το τελευταίο μάθημα που διδάσκουμε να αποτελεί σχεδόν ολόκληρο θέμα; Θα βλέπουν οι μελλοντικοί υποψήφιοι το θέμα Γ και θα τρέμει η καρδούλα τους. Κι εμείς θα τρέχουμε να ολοκληρώσουμε την ύλη πριν την καθαρο-Δευτέρα μην τυχόν και μπούμε σε άδεια τάξη όταν έλθει η στιγμή του Dopper... Κι όταν πάμε να διδάξουμε Doppler οι μαθητές μας θα παθαίνουν Παβλοφικό συνειρμο-ταράκουλο.
Εδώ δυσκολεύονται να κατανοήσουν την απάντηση στο ερώτημα 5.21 του σχολικού, θα μπορέσουν να απαντήσουν σε ένα Doppleriko ερώτημα όπως στο Γ.3;
Αυτή είναι η γνώμη μου ακόμη κι αν εδώ και εδώ έχω στο παρελθόν ασχοληθεί με θέμα παρόμοιο με το Γ.3.

Το Θέμα Δ, ευτυχώς, κλασσικό πρόβλημα Πανελλαδικών. Συγγενές με τα αντίστοιχα προβλήματα του σχολικού βιβλίου. Η ιδέα με τα δύο ομογενή τμήματα αρκετά καλή.

Κι επειδή κάθε χρόνο ψάχνουμε για πρωτότυπα θέματα, μια συμβουλή στους υποψήφιους της νέας χρονιάς αλλά και στους συναδέλφους: μην ασχοληθείτε φέτος με ασκήσεις στερεών με τρύπες και με Doppler ηχο-τρενο-συναντήσεις!



   ΟΙ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΗΜΕΡΗΣΙΩΝ


   ΟΙ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΕΣΠΕΡΙΝΩΝ





  • Σχόλια συναδέλφων στο YLIKONET