Όποιος σκορπίζει γνώση κερδίζει χαρά!!

Τετάρτη, 25 Απριλίου 2012

ΜΗ ΚΕΝΤΡΙΚΗ ΕΛΑΣΤΙΚΗ ΚΡΟΥΣΗ


Μια προέκταση της άσκησης 5.41 σελ. 180 του σχολικού βιβλίου

Α.  Να δείξετε ότι μετά την πλάγια ελαστική κρούση μεταξύ δύο σωμάτων ίδιας μάζας που το ένα αρχικά ήταν ακίνητο, τα δύο σώματα θα κινηθούν προς κάθετες μεταξύ τους κατευθύνσεις.
Β. Πάνω σε ένα λείο οριζόντιο τραπέζι ηρεμεί ένα σφαιρίδιο Σ2 μάζας m = 1 kgr στερεωμένο στην άκρη οριζόντιου ελατηρίου σταθεράς k = 100 N/m, του οποίου το άλλο άκρο συγκρατείται από ακλόνητο στήριγμα. Ένα δεύτερο σφαιρίδιο Σ1 ίδιας μάζας με το Σ2 κινείται με ταχύτητα υ1 =  2 m/sec πάνω σε μια ευθεία που δε διέρχεται από το κέντρο του Σ2 και σχηματίζει γωνία φ = 1350 με τον άξονα του ελατηρίου.  Ακολουθεί πλάγια ελαστική κρούση στο τέλος της οποίας διαπιστώνεται ότι το Σ2 κινείται κατά μήκος του άξονα του ελατηρίου κάνοντας απλή αρμονική ταλάντωση.
   1.  Ποια είναι η διεύθυνση κίνησης του Σ1 μετά την κρούση;  Πόσο είναι το μέτρο της ταχύτητάς του μετά την κρούση;                                                             
   2.  Να υπολογίστε τη μέγιστη ταχύτητα, το πλάτος της ταλάντωσης, και τη μέγιστη επιτάχυνση του Σ2.                                                                
   3. Να παραστήσετε σε κοινό ορθογώνιο σύστημα αξόνων τις συναρτήσεις της κινητικής, της δυναμικής και της ολικής ενέργειας της ταλάντωσης, σε συνάρτηση με την ταχύτητα.      

Δείτε:

Δευτέρα, 23 Απριλίου 2012

 Το «ταυ».


Ένα εκκρεμές (σχήμα 1) αποτελείται από δύο παρόμοιες ομογενείς λεπτές ράβδους α και β, με ίδιο μήκος L = 0,6 m και ίδια μάζα m = 2/3 kgr, συγκολλημένες κάθετα μεταξύ τους έτσι ώστε το ένα άκρο της α να συμπίπτει με το μέσον της β. Με τον τρόπο αυτό σχηματίζουν ένα Τ το οποίο μπορεί να περιστρέφεται γύρω από οριζόντιο άξονα, που διέρχεται από το άλλο άκρο Ο της α και είναι κάθετος στο επίπεδο που ορίζεται από τις ράβδους. Έτσι, το «Τ» συμπεριφέρεται ως εκκρεμές  που μπορεί να ταλαντώνεται  πάνω στο κατακόρυφο επίπεδο που ορίζεται από αυτό.
Α. Να υπολογίσετε τη ροπή αδράνειας του «Τ» γύρω από τον άξονα περιστροφής του.

Β. Στο σχήμα 2, το «Τ» ισορροπεί μαζί με ένα στερεό, το οποίο αποτελείται από δύο ομόκεντρες, κολλημένες μεταξύ τους, ομογενείς τροχαλίες. Η κοινή ισορροπία επιτυγχάνεται με τη βοήθεια δύο κατακόρυφων λεπτών σχοινιών που είναι τυλιγμένα στα αυλάκια των τροχαλιών του στερεού. H ακτίνα R της μεγάλης τροχαλίας είναι 0,2 m, ενώ της μικρής είναι r = 0,1 m.
Να υπολογίσετε τη μάζα m1 του στερεού.

Γ. Κάποια στιγμή κόβουμε το σχοινί με το οποίο συνδέονται τα δύο σώματα και έτσι το «Τ» αρχίζει να περιστρέφεται γύρω από το Ο, ενώ το στερεό αρχίζει να κατεβαίνει προς τα κάτω και το σχοινί που είναι τυλιγμένο στη μικρή τροχαλία να ξετυλίγεται χωρίς να γλιστράει.
Να βρείτε τη μέγιστη κινητική ενέργεια του «Τ».                                                        
Δ.  Αν ο ρυθμός μεταβολής της ορμής του στερεού είναι 5 kgr.m2, να υπολογίσετε: 

Δείτε:

Σάββατο, 14 Απριλίου 2012

ΣΥΝΑΝΤΗΣΕΙΣ ...΄Η ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ Vs Θ.Μ.Κ.Ε


Συχνά λέμε στους μαθητές «αν σε ένα πρόβλημα κινηματικής δεν αναφέρονται χρόνοι, λύστε το με το θεώρημα έργου – ενέργειας ή Θ.Μ.Κ.Ε». Η συμβουλή αυτή μπορεί να παγιδεύσει τους μαθητές αν οι κινήσεις που αναφέρονται στο πρόβλημα αφορούν δύο κινητά και είναι ομαλές.
Όταν δύο κινητά συναντιούνται, υπάρχει μια σχέση που δεν μπορεί να αξιοποιηθεί με την ενεργειακή μελέτη της κίνησής τους. η σχέση των χρόνων κίνησής τους. Π.χ. αν τα κινητά ξεκινούν ταυτόχρονα, οι χρόνοι κίνησής τους θα είναι ίσοι. 
Παρακάτω παρουσιάζονται δύο παραδείγματα.

1. Κυλιόμενη σφαίρα και κυβικό σώμα σε πλάγιο επίπεδο

Μία ομογενής σφαίρα, μάζας Μ = 3 kgr και ακτίνας R = 0,07 m, ανέρχεται πάνω σε  ένα πλάγιο επίπεδο, γωνίας κλίσης φ = 300, κυλιόμενη χωρίς να ολισθαίνει. Κάποια στιγμή, που τη θεωρούμε αρχή μέτρησης των χρόνων, η σφαίρα περνά από ένα σημείο Α του πλάγιου επιπέδου με ταχύτητα υ0 = 10 m/sec. Τη στιγμή αυτή αφήνουμε ένα κυβικό σώμα μάζας m = 1kgr, να ολισθήσει χωρίς αρχική ταχύτητα από ένα σημείο Γ του πλάγιου επιπέδου που βρίσκεται ψηλότερα από το Α.
α) Να υπολογίσετε το μέτρο του ρυθμού μεταβολής της στροφορμής της σφαίρας και του ρυθμού μεταβολής της ορμής του κύβου.
Σας δίνεται ότι η τριβή ολίσθησης που ασκείται στο κυβικό σώμα είναι ίση με τη στατική τριβή που δέχεται η σφαίρα.
β) Να υπολογίσετε την απόσταση ΑΓ, ώστε τα δύο σώματα να συγκρουστούν τη στιγμή που η ταχύτητα της σφαίρας μηδενίζεται.
 γ) Αν η κρούση είναι μετωπική κι ελαστική, να υπολογίσετε την ταχύτητα του κάθε σώματος αμέσως μετά την κρούση. (Θεωρείστε ότι όλη η ενέργεια που μεταφέρεται στη σφαίρα κατά τη διάρκεια της κρούσης μετατρέπεται αποκλειστικά σε μεταφορική κινητική ενέργεια).
  Δίνεται ότι η ακτίνα της σφαίρας και η ακμή του κύβου είναι αμελητέες σε σχέση με την απόσταση ΑΓ και ότι: g = 10 m/sec2, Ιc.m, σφ = 2ΜR2/5.                   

Δείτε:


2. Δύο κυλιόμενες μπάλες 


 Δύο μικρές σφαιρικές μπάλες με ίσες ακτίνες και μάζες, βρίσκονται αρχικά ακίνητες πάνω σε ένα οριζόντιο επίπεδο και σε απόσταση L = 46 m η μία από την άλλη, πολύ μεγάλη σε σύγκριση με τις ακτίνες τους. Η μια σφαίρα είναι συμπαγής, με ροπή αδράνειας  (2/5)mR2 ενώ η άλλη είναι κούφια (σφαιρικός φλοιός) με ροπή αδράνειας (2/3)mR2.
Υποθέστε ότι κάποια στιγμή (t=0) στα κέντρα των δύο σφαιρών ενεργούν δύο αντίθετες οριζόντιες δυνάμεις (μια σε κάθε σφαίρα), σταθερού μέτρου F, εξαιτίας των οποίων οι δύο σφαίρες αρχίζουν να πλησιάζουν η μία προς την άλλη.

α) Αν η κίνησή τους είναι κύλιση χωρίς ολίσθηση, να βρείτε σε ποια θέση θα συναντηθούν.

β) Αν ελάχιστα πριν την κρούση η συνολική κινητική ενέργεια της συμπαγούς σφαίρας είναι 125 J, πόσο είναι το μέτρο της F και πόση είναι η μεταφορική και η στροφική κινητική ενέργεια της άλλης σφαίρας;

Δείτε: